Microwave processing has been emerging as an innovative sintering method for many traditional ceramics, advanced ceramics, specialty ceramics and ceramic composites as well as polymer and polymer composites. Development of functionally gradient materials: joining; melting; fibre drawing; reaction synthesis of ceramics; synthesis of ceramic powder, phosphor materials, whiskers, microtubes and nanotubes; sintering of zinc oxide varistors; glazing of coating surface and coating development have been performed using microwave heating. In addition, microwave energy is being explored for the sintering of metal powders also. Ceramic and metal nanopowders have been sintered in microwave. Furthermore, initiatives have been taken to process the amorphous materials (e.g. glass) by microwave heating. Besides this, attempt has been made to study the heating behaviour of materials in the electric and magnetic fields at microwave frequencies. The research is now focused on the use of microwave processing for industrial applications.
Microwave processing has been emerging as an innovative sintering method for many traditional ceramics, advanced ceramics, specialty ceramics and ceramic composites as well as polymer and polymer composites. Development of functionally gradient materials, joining, melting, fibre drawing, reaction synthesis of ceramics, synthesis of ceramic powder, phosphor materials, whiskers, microtubes and nanotubes, sintering of zinc oxide varistors, glazing of coating surface and coating development have been performed using microwave heating. In addition, microwave energy is being explored for the sintering of metal powders also. Ceramic and metal nanopowders have been sintered in microwave. Furthermore, initiatives have been taken to process the amorphous materials (e.g. glass) by microwave heating. Besides this, an attempt has been made to study the heating behaviour of materials in the electric and magnetic fields at microwave frequencies. The research is now focused on the use of microwave processing for industrial applications.
The present work reports a simple, inexpensive method for synthesis of calcium hydroxide [Ca(OH) 2 ] nanoparticles (CHNPs). The method involves chemical precipitation (CP) in aqueous medium at room temperature. Calcium nitrate dihydrate [Ca (NO 3 ) 2 .2H 2 O] and sodium hydroxide were used as precursors. The CHNPs were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Rietveld analysis, field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM), BET surface area evaluation as well as particle size distribution analysis techniques. The results confirmed the synthesis of CHNPs as the major phase. The CHNPs exhibited an average size of about 350 nm. In addition, some calcite phase formed due to the inevitable carbonation process. A very minor amount of aragonite phase was also present. A schematically developed new qualitative model is proposed to explain the genesis and subsequent evolution of the various phases at the nanoscale. The model helps to identify the rate-controlling step. It also highlights the implication of reaction kinetics control in synthesis of predesigned nanophase assembly.
No abstract
Microplasma sprayed (MIPS) HAP coatings on SS316L substrates were characterized by x-ray diffraction, Fourier transformed infrared spectroscopy, optical microscopy, scanning electron microscopy (SEM), field emission scanning electron microscopy (FE-SEM), atomic force microscopy and image analysis. The coating showed a high degree of crystallinity~92% %, a high porosity level of 20 vol.% % and a moderate bonding strength of about 13 MPa. The displacement controlled three-point bend tests and associated results of optical microscopy indicated that crack deflection, crack branching, and also local crack bridging occurred during crack propagation in the coating. The nano-hardness (H) and YoungÕs modulus (E) of the MIPS-HAP coatings as measured by nanoindentation technique were about 6 and 92 GPa, respectively. The fracture toughness (K ic ) of the coating was~0.6 MPaAEm 0.5 . From the nano-scratch experiments, the critical normal load at which localized microcracking led to delamination was measured to be~400 mN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.