The present work reports a simple, inexpensive method for synthesis of calcium hydroxide [Ca(OH) 2 ] nanoparticles (CHNPs). The method involves chemical precipitation (CP) in aqueous medium at room temperature. Calcium nitrate dihydrate [Ca (NO 3 ) 2 .2H 2 O] and sodium hydroxide were used as precursors. The CHNPs were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Rietveld analysis, field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM), BET surface area evaluation as well as particle size distribution analysis techniques. The results confirmed the synthesis of CHNPs as the major phase. The CHNPs exhibited an average size of about 350 nm. In addition, some calcite phase formed due to the inevitable carbonation process. A very minor amount of aragonite phase was also present. A schematically developed new qualitative model is proposed to explain the genesis and subsequent evolution of the various phases at the nanoscale. The model helps to identify the rate-controlling step. It also highlights the implication of reaction kinetics control in synthesis of predesigned nanophase assembly.
Computational models are developed to predict the natural convection heat transfer and buoyancy for a Montgolfiere under conditions relevant to the Titan atmosphere. Idealized single-and double-walled balloon geometries are simulated using algorithms suitable for both laminar and (averaged) turbulent convection. Steadystate performance results are compared with existing heat transfer coefficient correlations. The laminar results, in particular, are used to test the validity of the correlations in the absence of uncertainties associated with turbulence modeling. Some discrepancies are observed, which appear to be primarily associated with temperature nonuniformity on the balloon surface. The predicted buoyancy for both the single-and double-walled balloons in the turbulent convection regime, predicted with standard two-equation turbulence models, showed trends similar to those with the empirical correlations. There was also good agreement with recently conducted experiments in a cryogenic facility designed to simulate the Titan atmosphere.
We have demonstrated a novel solution chemistry route for the synthesis of nanoscale hierarchical flower-like MnO 2 through a light-assisted decomposition of a manganese precursor over the surface of a clay nanotube. By tuning the reaction conditions, we have successfully synthesized δ-MnO 2 flowery nanostructures comprising assemblies of intersected nanosheets and subsequently studied their photocatalytic activity for the degradation of organic dyes under natural sunlight irradiations. The crystallographic phase dependent photocatalytic activity of MnO 2 nanocomposites has also been carried out toward the photodegradation of dyes, indicating δ-MnO 2 nanostructures possess higher catalytic efficiency compared to α-MnO 2 . The underlying mechanism demonstrates the formation of reactive oxygen species, which in turn facilitate the degradation of dyes and also substantiates that there is no need of any supplementary oxygen sources during photodegradation. The outstanding performance of the hierarchical δ-MnO 2 nanocomposites, together with the convenient fabrication method, represents an alternative and environmentally benign route to develop heterogeneous photocatalyst for the degradation of refractory pollutants. Thus, these new insights will shed light in the practical applications of heterogeneous catalysts for environmental remediation through wastewater treatment in a greener approach.
As the vortical disturbances of a shrouded jet pass the sharp edge of the shroud exit some of the energy is scattered into acoustic waves. Scattering into upstream-propagating acoustic modes is a potential mechanism for closing the resonance loop in the ‘howling’ resonances that have been observed in various shrouded jet configurations over the years. A model is developed for this interaction at the shroud exit. The jet is represented as a uniform flow separated by a cylindrical vortex sheet from a concentric co-flow within the cylindrical shroud. A second vortex sheet separates the co-flow from an ambient flow outside the shroud, downstream of its exit. The Wiener–Hopf technique is used to compute reflectivities at the shroud exit. For some conditions it appears that the reflection of finite-wavelength hydrodynamic vorticity modes on the vortex sheet defining the jet could be sufficient to reinforce the shroud acoustic modes to facilitate resonance. The analysis also gives the reflectivities for the shroud acoustic modes, which would also be important in establishing resonance conditions. Interestingly, it is also predicted that the shroud exit can be ‘transparent’ for ranges of Mach numbers, with no reflection into any upstream-propagating acoustic mode. This is phenomenologically consistent with observations that indicate a peculiar sensitivity of resonances of this kind to, say, jet Mach number.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.