Since its introduction the Perfectly Matched Layer (PML) has proven to be an accurate and robust method for domain truncation in computational electromagnetics. However, the mathematical analysis of PMLs has been limted to special cases. In particular, the basic question of whether or not a stable PML exists for arbitrary wave propagation problems remains unanswered. In this work we develop general tools for constructing PMLs for first order hyperbolic systems. We present a model with many parameters which is applicable to all hyperbolic systems, and which we prove is well-posed and perfectly matched. We also introduce an automatic method for analyzing the stability of the model and establishing energy inequalities. We illustrate our techniques with applications to Maxwell's equations, the linearized Euler equations, as well as arbitrary 2 × 2 systems in (2 + 1) dimensions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.