1. The paradigm-changing opportunities of biologging sensors for ecological research, especially movement ecology, are vast, but the crucial questions of how best to match the most appropriate sensors and sensor combinations to specific biological questions and how to analyse complex biologging data, are mostly ignored.2. Here, we fill this gap by reviewing how to optimize the use of biologging techniques to answer questions in movement ecology and synthesize this into an Integrated Biologging Framework (IBF).3. We highlight that multisensor approaches are a new frontier in biologging, while identifying current limitations and avenues for future development in sensor technology.4. We focus on the importance of efficient data exploration, and more advanced multidimensional visualization methods, combined with appropriate archiving and sharing approaches, to tackle the big data issues presented by biologging. We also discuss the challenges and opportunities in matching the peculiarities of specific sensor data to the statistical models used, highlighting at the same time the large advances which will be required in the latter to properly analyse biologging data.
Increasing urbanisation is detrimental for some animal species and potentially advantageous for others. Urban-nesting populations of gulls have undergone rapid population increases worldwide, which has resulted in an increase in human-gull conflicts. In order to inform management and conservation decisions in relation to these populations, more information is needed about the behaviour of these birds in urban settings and how they utilise their environment. This study combined Global Positioning System (GPS) tracking data of 12 urban-nesting lesser black-backed gulls, Larus fuscus , with habitat and behaviour data over three breeding seasons (2016–2018). Despite the proximity of marine areas (~10 km), the birds only made significant use of terrestrial environments, spending two-thirds of their time away from the nest in suburban and urban areas, and one-third in rural green areas. The gulls utilised suburban and urban areas more as their chicks grew and appeared to use diverse foraging strategies to suit different habitats. These results indicate that the range of potential foraging areas available needs to be considered in management decisions and that urban bird populations may not use the resources they are expected to.
Numerous animals are able to adapt to temporal patterns in natural food availability, but whether species living in relatively novel environments such as cities can adapt to anthropogenic activity cycles is less well understood. We aimed to assess the extent to which urban gulls have adapted their foraging schedule to anthropogenic food source fluctuations related to human activity by combining field observations at three distinct urban feeding grounds (park, school and waste centre) with global positioning system (GPS) tracking data of gulls visiting similar types of feeding grounds throughout the same city. We found that the birds' foraging patterns closely matched the timing of school breaks and the opening and closing times of the waste centre, but gull activity in the park appeared to correspond to the availability of natural food sources. Overall, this suggests that gulls may have the behavioural flexibility to adapt their foraging behaviour to human time schedules when beneficial and that this trait could potentially enable them to thrive in cities.
Biased offspring sex ratio is relatively rare in birds and sex allocation can vary with environmental conditions, with the larger and more costly sex, which can be either the male or female depending on species, favoured during high food availability. Sex‐specific parental investment may lead to biased mortality and, coupled with unequal production of one sex, may result in biased adult sex ratio, with potential grave consequences on population stability. The African Penguin Spheniscus demersus, endemic to southern Africa, is an endangered monogamous seabird with bi‐parental care. Female adult African Penguins are smaller, have a higher foraging effort when breeding and higher mortality compared with adult males. In 2015, a year in which environmental conditions were favourable for breeding, African Penguin chick production on Bird Island, Algoa Bay, South Africa, was skewed towards males (1.5 males to 1 female). Males also had higher growth rates and fledging mass than females, with potentially higher post‐fledging survival. Female, but not male, parents had higher foraging effort and lower body condition with increasing number of male chicks in their brood, thereby revealing flexibility in their parental strategy, but also the costs of their investment in their current brood. The combination of male‐biased chick production and higher female mortality, possibly at the juvenile stage as a result of lower parental investment in female chicks, and/or at the adult stage as a result of higher parental investment, may contribute to a biased adult sex ratio (ASR) in this species. While further research during years of contrasting food availability is needed to confirm this trend, populations with male‐skewed ASRs have higher extinction risks and conservation strategies aiming to benefit female African Penguin might need to be developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.