The biomechanical changes following meniscal tears and surgery could lead to or accelerate the occurrence of osteoarthritis. The aim of this study was to investigate the biomechanical effects of horizontal meniscal tears and different resection strategies on a rabbit knee joint by finite element analysis and to provide reference for animal experiments and clinical research. Magnetic resonance images of a male rabbit knee joint were used to establish a finite element model with intact menisci under resting state. A medial meniscal horizontal tear was set involving 2/3 width of a meniscus. Seven models were finally established, including intact medial meniscus (IMM), horizontal tear of the medial meniscus (HTMM), superior leaf partial meniscectomy (SLPM), inferior leaf partial meniscectomy (ILPM), double-leaf partial meniscectomy (DLPM), subtotal meniscectomy (STM), and total meniscectomy (TTM). The axial load transmitted from femoral cartilage to menisci and tibial cartilage, the maximum von Mises stress and the maximum contact pressure on the menisci and cartilages, the contact area between cartilage to menisci and cartilage to cartilage, and absolute value of the meniscal displacement were analyzed and evaluated. The results showed that the HTMM had little effect on the medial tibial cartilage. After the HTMM, the axial load, maximum von Mises stress and maximum contact pressure on the medial tibial cartilage increased 1.6%, 1.2%, and 1.4%, compared with the IMM. Among different meniscectomy strategies, the axial load and the maximum von Mises stress on the medial menisci varied greatly. After the HTMM, SLPM, ILPM, DLPM, and STM, the axial load on medial menisci decreased 11.4%, 42.2%, 35.4% 48.7%, and 97.0%, respectively; the maximum von Mises stress on medial menisci increased 53.9%, 62.6%, 156.5%, and 65.5%, respectively, and the STM decreased 57.8%, compared to IMM. The radial displacement of the middle body of the medial meniscal was larger than any other part in all the models. The HTMM led to few biomechanical changes in the rabbit knee joint. The SLPM showed minimal effect on joint stress among all resection strategies. It is recommended to preserve the posterior root and the remaining peripheral edge of the meniscus during surgery for an HTMM.
Purpose As a simple and invasive treatment, arthroscopic medial meniscal posterior horn resections (MMPHRs) can relieve the obstructive symptoms of medial meniscus posterior root tears (MMPRTs) but with the risk of aggravating biomechanical changes of the joint. The aim of this study was to analyze dynamic simulation of the knee joint after medial meniscus posterior root tear and posterior horn resection. Methods This study established static and dynamic models of MMPRTs and MMPHRs on the basis of the intact medial meniscus model (IMM). In the inite element analysis, the three models were subjected to 1000 N axial static load and the human walking gait load deined by the ISO14243-1 standard to evaluate the inluence of MMPRTs and MMPHRs on knee joint mechanics during static standing and dynamic walking. Results In the static state, the load ratio of the medial and lateral compartments remained nearly constant (2:1), while in the dynamic state, the load ratio varied with the gait cycle. After MMPHRs, at 30% of the gait cycle, compared with the MMPRTs condition, the maximum von Mises stress of the lateral meniscus (LM) and the lateral tibial cartilage (LTC) were increased by 166.0% and 50.0%, respectively, while they changed by less than 5% during static analysis. The maximum von Mises stress of the medial meniscus (MM) decreased by 55.7%, and that of the medial femoral cartilage (MFC) increased by 53.5%. Conclusion After MMPHRs, compared with MMPRTs, there was no signiicant stress increase in articular cartilage in static analysis, but there was a stress increase and concentration in both medial and lateral compartments in dynamic analysis, which may aggravate joint degeneration. Therefore, in clinical treatments, restoring the natural structure of MMPRTs is irst recommended, especially for physically active patients. Keywords Meniscus root tear • Meniscectomy • Finite element analysis • Walking gait • Dynamic mechanical analysisQiang Yang, Xiao-yu Zhu and Jia-yi Bao contributed equally to this study and are co-irst authors.
Objective: The debate on the superiority of single-or double-bundle for anterior cruciate ligament reconstruction has not ceased. The comparative studies on intra-articular biomechanics after different surgical reconstructions are rare. This study is to evaluate the biomechanical stress distribution intra-knee after single-and double-bundle anterior cruciate ligament reconstruction by three-dimensional finite element analysis, and to observe the change of stress concentration under the condition of vertical gradient loads.Methods: In this study, magnetic resonance imaging data were extracted from patients and healthy controls for biomechanical analysis. Patients included in the three models were matched in age and sex. The strength and distribution of induced stresses were analyzed in two frequently used procedures, anatomical single-bundle anterior cruciate ligament reconstruction and anatomical double-bundle anterior cruciate ligament reconstruction, using femoral-grafttibial system under different loads, to mimic a post-operation mechanical motion. The three-dimensional finite-element models for normal ligament and two surgical methods were applied. A vertical force simulating daily walking was performed on the models to assess the interfacial stresses and displacements of intra-articular tissues and ligaments. The evaluation results mainly included the stress of each part of ligament and meniscus. The stress values of different parts of three models were extracted and compared. Results:The stress of ligament/graft at femoral side of three finite-element models was significantly higher than at tibial side, while the highest level was observed in single-bundle reconstruction finite-element model. With the increase of force, the maximum stress in the medial (7.1-7.1 MPa) and lateral (4.9-7.4 MPa) meniscus of singlebundle reconstruction finite-element model shifted from the anterior horn to the central area (p = 0.0161, 0.0479, respectively). The stress was shown to be at a lower level at femoral side and posterior cruciate ligament of intra-knee
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.