The exploitation of microdroplets produced within microfluidic environments has recently emerged as a new and exciting technological platform for applications within the chemical and biological sciences. Interest in microfluidic systems has been stimulated by a range of fundamental features that accompany system miniaturization. Such features include the ability to process and handle small volumes of fluid, improved analytical performance when compared to macroscale analogues, reduced instrumental footprints, low unit cost, facile integration of functional components and the exploitation of atypical fluid dynamics to control molecules in both time and space. Moreover, microfluidic systems that generate and utilize a stream of sub-nanolitre droplets dispersed within an immiscible continuous phase have the added advantage of allowing ultra-high throughput experimentation and being able to mimic conditions similar to that of a single cell (in terms of volume, pH, and salt concentration) thereby compartmentalizing biological and chemical reactions. This review provides an overview of methods for generating, controlling and manipulating droplets. Furthermore, we discuss key fields of use in which such systems may make a significant impact, with particular emphasis on novel applications in the biological and physical sciences.
We demonstrate that single cells can be controllably compartmentalized within aqueous microdroplets; using such an approach we perform high-throughput screening by detecting the expression of a fluorescent protein in individual cells with simultaneous measurement of droplet size and cell occupancy.
We describe the design, fabrication and use of a single-layered poly(dimethylsiloxane) microfluidic structure for the entrapment and release of microdroplets in an array format controlled entirely by liquid flow. Aqueous picoliter droplets are trapped en masse and optically monitored for extended periods of time. Such an array-based approach is used to characterize droplet shrinkage, aggregation of encapsulated E. coli cells and enzymatic reactions. We also demonstrate that trapped droplets may be recovered from the microfluidic array for further processing.
We describe the development of an enzyme assay inside picoliter microdroplets. The enzyme alkaline phosphatase is expressed in Escherichia coli cells and presented in the periplasm. Droplets act as discrete reactors which retain and localize any reaction product. The catalytic turnover of the substrate is measured in individual droplets by monitoring the fluorescence at several time points within the device and exhibits kinetic behavior similar to that observed in bulk solution. Studies on wild type and a mutant enzyme successfully demonstrated the feasibility of using microfluidic droplets to provide time-resolved kinetic measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.