The mechanical properties of cells influence their cellular and subcellular functions, including cell adhesion, migration, polarization, and differentiation, as well as organelle organization and trafficking inside the cytoplasm. Yet reported values of cell stiffness and viscosity vary substantially, which suggests differences in how the results of different methods are obtained or analyzed by different groups. To address this issue and illustrate the complementarity of certain approaches, here we present, analyze, and critically compare measurements obtained by means of some of the most widely used methods for cell mechanics: atomic force microscopy, magnetic twisting cytometry, particle-tracking microrheology, parallel-plate rheometry, cell monolayer rheology, and optical stretching. These measurements highlight how elastic and viscous moduli of MCF-7 breast cancer cells can vary 1,000-fold and 100-fold, respectively. We discuss the sources of these variations, including the level of applied mechanical stress, the rate of deformation, the geometry of the probe, the location probed in the cell, and the extracellular microenvironment.
We describe the design, fabrication and use of a single-layered poly(dimethylsiloxane) microfluidic structure for the entrapment and release of microdroplets in an array format controlled entirely by liquid flow. Aqueous picoliter droplets are trapped en masse and optically monitored for extended periods of time. Such an array-based approach is used to characterize droplet shrinkage, aggregation of encapsulated E. coli cells and enzymatic reactions. We also demonstrate that trapped droplets may be recovered from the microfluidic array for further processing.
Water-in-oil microdroplets in microfluidics are well-defined individual picoliter reaction compartments and, as such, have great potential for quantitative high-throughput biological screening. This, however, depends upon contents of the droplets not leaking out into the oil phase. To assess the mechanism of possible leaking, the retention of various fluorescein derivatives from droplets formed in mineral oil and stored for hours in a reservoir on chip was studied. Leaking into the oil phase was observed and was shown to be dependent on the nature of the compounds and on the concentration of the silicone-based polymeric surfactant Abil EM 90 used. In experiments in which droplets filled with fluorescein were mixed with droplets filled with only buffer, the rate of efflux from filled droplets to empty droplets was dependent on the number of neighboring droplets of different composition. Buffer droplets with five fluorescein-containing neighbors took up the fluorophore 4.5 times faster than buffer droplets without fluorescein neighbors. The addition of bovine serum albumin (BSA) substantially reduced leaking. A formulation with 5% BSA reduces leaking of the fluorophore from 45% to 3%. Inclusion of BSA enabled experiments to be carried out over periods up to 18 h, without substantial leaking (<5%). We demonstrate the utility of this additive by following the enzymatic activity of alkaline phosphatase expressed by Escherichia coli cells. The ability to reliably compartmentalize genotype (cell) and phenotype (reaction product) is the basis for using microdroplets in directed evolution studies, and the approaches described herein provide a test system for assessing emulsion formulations for such purposes.
Microdroplets have great potential for high-throughput biochemical screening. We report the design of an integrated microfluidic device for droplet formation, incubation and screening. Picolitre water-in-oil droplets can be stored in a reservoir that contains approximately 10(6) droplets. In this reservoir droplets are stable for at least 6 h, which gives an extended timescale for biochemical experiments. We demonstrate the utility of the system by following the in vitro expression of green fluorescent protein. The high efficiency allows protein expression from a single molecule of DNA template, creating "monoclonal droplets" in which genotype and phenotype are combined in one emulsion compartment.
We describe the development of an enzyme assay inside picoliter microdroplets. The enzyme alkaline phosphatase is expressed in Escherichia coli cells and presented in the periplasm. Droplets act as discrete reactors which retain and localize any reaction product. The catalytic turnover of the substrate is measured in individual droplets by monitoring the fluorescence at several time points within the device and exhibits kinetic behavior similar to that observed in bulk solution. Studies on wild type and a mutant enzyme successfully demonstrated the feasibility of using microfluidic droplets to provide time-resolved kinetic measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.