J. DeLoera-T. McAllister and K. D. Mulmuley-H. Narayanan-M. Sohoni independently proved that determining the vanishing of Littlewood-Richardson coefficients has strongly polynomial time computational complexity. Viewing these as Schubert calculus numbers, we prove the generalization to the Littlewood-Richardson polynomials that control equivariant cohomology of Grassmannians. We construct a polytope using the edge-labeled tableau rule of H. Thomas-A. Yong. Our proof then combines a saturation theorem of D. Anderson-E. Richmond-A. Yong, a reading order independence property, andÉ. Tardos' algorithm for combinatorial linear programming.
Schubert polynomials form a basis of all polynomials and appear in the study of cohomology rings of flag manifolds. The vanishing problem for Schubert polynomials asks if a coefficient of a Schubert polynomial is zero. We give a tableau criterion to solve this problem, from which we deduce the first polynomial time algorithm. These results are obtained from new characterizations of the Schubitope, a generalization of the permutahedron defined for any subset of the n × n grid. In contrast, we show that computing these coefficients explicitly is #P-complete.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.