We give an explicit formula for the degree of the Grothendieck polynomial of a Grassmannian permutation and a closely related formula for the Castelnuovo-Mumford regularity of the Schubert determinantal ideal of a Grassmannian permutation. We then provide a counterexample to a conjecture of Kummini-Lakshmibai-Sastry-Seshadri on a formula for regularities of standard open patches of particular Grassmannian Schubert varieties and show that our work gives rise to an alternate explicit formula in these cases. We end with a new conjecture on the regularities of standard open patches of arbitrary Grassmannian Schubert varieties.
A K-theoretic analogue of RSK insertion and the Knuth equivalence relations were introduced in [1, 2]. The resulting K-Knuth equivalence relations on words and increasing tableaux on [n] have prompted investigation into the equivalence classes of tableaux arising from these relations. Of particular interest are the tableaux that are unique in their class, which we refer to as unique rectification targets (URTs). In this paper we give several new families of URTs and a bound on the length of intermediate words connecting two K-Knuth equivalent words. In addition, we describe an algorithm to determine if two words are K-Knuth equivalent and to compute all K-Knuth equivalence classes of tableaux on [n].
J. DeLoera-T. McAllister and K. D. Mulmuley-H. Narayanan-M. Sohoni independently proved that determining the vanishing of Littlewood-Richardson coefficients has strongly polynomial time computational complexity. Viewing these as Schubert calculus numbers, we prove the generalization to the Littlewood-Richardson polynomials that control equivariant cohomology of Grassmannians. We construct a polytope using the edge-labeled tableau rule of H. Thomas-A. Yong. Our proof then combines a saturation theorem of D. Anderson-E. Richmond-A. Yong, a reading order independence property, andÉ. Tardos' algorithm for combinatorial linear programming.
We give degree formulas for Grothendieck polynomials indexed by vexillary permutations and 1432-avoiding permutations via tableau combinatorics. These formulas generalize a formula for degrees of symmetric Grothendieck polynomials which appeared in previous joint work of the authors with Y. Ren and A. St. Dizier.We apply our formulas to compute Castelnuovo-Mumford regularity of classes of generalized determinantal ideals. In particular, we give combinatorial formulas for the regularities of all one-sided mixed ladder determinantal ideals. We also derive formulas for the regularities of certain Kazhdan-Lusztig ideals, including those coming from open patches of Schubert varieties in Grassmannians. This provides a correction to a conjecture of Kummini-Lakshmibai-Sastry-Seshadri (2015).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.