Abstract. We show that locally acyclic cluster algebras have (at worst) canonical singularities. In fact, we prove that locally acyclic cluster algebras of positive characteristic are strongly F -regular. In addition, we show that upper cluster algebras are always Frobenius split by a canonically defined splitting, and that they have a free canonical module of rank one. We also give examples to show that not all upper cluster algebras are F-regular if the local acyclicity is dropped.
Abstract. We describe a closed immersion from each representation space of a type A quiver with bipartite (i.e., alternating) orientation to a certain opposite Schubert cell of a partial flag variety. This "bipartite Zelevinsky map" restricts to an isomorphism from each orbit closure to a Schubert variety intersected with the above-mentioned opposite Schubert cell. For type A quivers of arbitrary orientation, we give the same result up to some factors of general linear groups.These identifications allow us to recover results of Bobiński and Zwara; namely we see that orbit closures of type A quivers are normal, Cohen-Macaulay, and have rational singularities. We also see that each representation space of a type A quiver admits a Frobenius splitting for which all of its orbit closures are compatibly Frobenius split.
Abstract. Matrix Schubert varieties are certain varieties in the affine space of square matrices which are determined by specifying rank conditions on submatrices. We study these varieties for generic matrices, symmetric matrices, and upper triangular matrices in view of two applications to algebraic statistics: we observe that special conditional independence models for Gaussian random variables are intersections of matrix Schubert varieties in the symmetric case. Consequently, we obtain a combinatorial primary decomposition algorithm for some conditional independence ideals. We also characterize the vanishing ideals of Gaussian graphical models for generalized Markov chains.In the course of this investigation, we are led to consider three related stratifications, which come from the Schubert stratification of a flag variety. We provide some combinatorial results, including describing the stratifications using the language of rank arrays and enumerating the strata in each case.
We give an explicit formula for the degree of the Grothendieck polynomial of a Grassmannian permutation and a closely related formula for the Castelnuovo-Mumford regularity of the Schubert determinantal ideal of a Grassmannian permutation. We then provide a counterexample to a conjecture of Kummini-Lakshmibai-Sastry-Seshadri on a formula for regularities of standard open patches of particular Grassmannian Schubert varieties and show that our work gives rise to an alternate explicit formula in these cases. We end with a new conjecture on the regularities of standard open patches of arbitrary Grassmannian Schubert varieties.
We give an explicit presentation for each lower bound cluster algebra. Using this presentation, we show that each lower bound algebra Gröbner degenerates to the Stanley-Reisner scheme of a vertexdecomposable ball or sphere, and is thus Cohen-Macaulay. Finally, we use Stanley-Reisner combinatorics and a result of Knutson-Lam-Speyer to show that all lower bound algebras are normal.A more interesting and morally correct statement is that each of these spaces possesses a stratification such that each stratum naturally has a cluster algebra in its ring of functions.2 More specifically, we consider lower bound algebras defined by a quiver in the body of the paper, and consider the more general context of geometric type in Appendix B.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.