We study liquid democracy, a collective decision making paradigm that allows voters to transitively delegate their votes, through an algorithmic lens. In our model, there are two alternatives, one correct and one incorrect, and we are interested in the probability that the majority opinion is correct. Our main question is whether there exist delegation mechanisms that are guaranteed to outperform direct voting, in the sense of being always at least as likely, and sometimes more likely, to make a correct decision. Even though we assume that voters can only delegate their votes to better-informed voters, we show that local delegation mechanisms, which only take the local neighborhood of each voter as input (and, arguably, capture the spirit of liquid democracy), cannot provide the foregoing guarantee. By contrast, we design a non-local delegation mechanism that does provably outperform direct voting under mild assumptions about voters.
Liquid democracy is the principle of making collective decisions by letting agents transitively delegate their votes. Despite its significant appeal, it has become apparent that a weakness of liquid democracy is that a small subset of agents may gain massive influence. To address this, we propose to change the current practice by allowing agents to specify multiple delegation options instead of just one. Much like in nature, where -fluid mechanics teaches us -liquid maintains an equal level in connected vessels, so do we seek to control the flow of votes in a way that balances influence as much as possible. Specifically, we analyze the problem of choosing delegations to approximately minimize the maximum number of votes entrusted to any agent, by drawing connections to the literature on confluent flow. We also introduce a random graph model for liquid democracy, and use it to demonstrate the benefits of our approach both theoretically and empirically.
Algorithms increasingly govern societal functions, impacting multiple stakeholders and social groups. How can we design these algorithms to balance varying interests in a moral, legitimate way? As one answer to this question, we present WeBuildAI, a collective participatory framework that enables people to build algorithmic policy for their communities. The key idea of the framework is to enable stakeholders to construct a computational model that represents their views and to have those models vote on their behalf to create algorithmic policy. As a case study, we applied this framework to a matching algorithm that operates an on-demand food donation transportation service in order to adjudicate equity and efficiency trade-offs. The service's stakeholders--donors, volunteers, recipient organizations, and nonprofit employees--used the framework to design the algorithm through a series of studies in which we researched their experiences. Our findings suggest that the framework successfully enabled participants to build models that they felt confident represented their own beliefs. Participatory algorithm design also improved both procedural fairness and the distributive outcomes of the algorithm, raised participants' algorithmic awareness, and helped identify inconsistencies in human decision-making in the governing organization. Our work demonstrates the feasibility, potential and challenges of community involvement in algorithm design.
We study liquid democracy, a collective decision making paradigm that allows voters to transitively delegate their votes, through an algorithmic lens. In our model, there are two alternatives, one correct and one incorrect, and we are interested in the probability that the majority opinion is correct. Our main question is whether there exist delegation mechanisms that are guaranteed to outperform direct voting, in the sense of being always at least as likely, and sometimes more likely, to make a correct decision. Even though we assume that voters can only delegate their votes to better-informed voters, we show that local delegation mechanisms, which only take the local neighborhood of each voter as input (and, arguably, capture the spirit of liquid democracy), cannot provide the foregoing guarantee. By contrast, we design a non-local delegation mechanism that does provably outperform direct voting under mild assumptions about voters.
Expert crowdsourcing (e.g., Upwork.com) provides promising benefits such as productivity improvements for employers, and flexible working arrangements for workers. Yet to realize these benefits, a key persistent challenge is effective hiring at scale. Current approaches, such as reputation systems and standardized competency tests, develop weaknesses such as score inflation over time, thus degrading market quality. This paper presents HirePeer, a novel alternative approach to hiring at scale that leverages peer assessment to elicit honest assessments of fellow workers' job application materials, which it then aggregates using an impartial ranking algorithm. This paper reports on three studies that investigate both the costs and the benefits to workers and employers of impartial peer-assessed hiring. We find, to solicit honest assessments, algorithms must be communicated in terms of their impartial effects. Second, in practice, peer assessment is highly accurate, and impartial rank aggregation algorithms incur a small accuracy cost for their impartiality guarantee. Third, workers report finding peer-assessed hiring useful for receiving targeted feedback on their job materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.