The maximum Nash welfare (MNW) solution—which selects an allocation that maximizes the product of utilities—is known to provide outstanding fairness guarantees when allocating divisible goods. And while it seems to lose its luster when applied to indivisible goods, we show that, in fact, the MNW solution is strikingly fair even in that setting. In particular, we prove that it selects allocations that are envy-free up to one good—a compelling notion that is quite elusive when coupled with economic efficiency. We also establish that the MNW solution provides a good approximation to another popular (yet possibly infeasible) fairness property, the maximin share guarantee, in theory and—even more so—in practice. While finding the MNW solution is computationally hard, we develop a nontrivial implementation and demonstrate that it scales well on real data. These results establish MNW as a compelling solution for allocating indivisible goods and underlie its deployment on a popular fair-division website.
The literature on algorithmic mechanism design is mostly concerned with game-theoretic versions of optimization problems to which standard economic money-based mechanisms cannot be applied efficiently. Recent years have seen the design of various truthful approximation mechanisms that rely on payments. In this paper, we advocate the reconsideration of highly structured optimization problems in the context of mechanism design. We explicitly argue for the first time that, in such domains, approximation can be leveraged to obtain truthfulness without resorting to payments. This stands in contrast to previous work where payments are almost ubiquitous, and (more often than not) approximation is a necessary evil that is required to circumvent computational complexity.We present a case study in approximate mechanism design without money. In our basic setting agents are located on the real line and the mechanism must select the location of a public facility; the cost of an agent is its distance to the facility. We establish tight upper and lower bounds for the approximation ratio given by strategyproof mechanisms without payments, with respect to both deterministic and randomized mechanisms, under two objective functions: the social cost, and the maximum cost. We then extend our results in two natural directions: a domain where two facilities must be located, and a domain where each agent controls multiple locations.
We adopt a utilitarian perspective on social choice, assuming that agents have (possibly latent) utility functions over some space of alternatives. For many reasons one might consider mechanisms, or social choice functions, that only have access to the ordinal rankings of alternatives by the individual agents rather than their utility functions. In this context, one possible objective for a social choice function is the maximization of (expected) social welfare relative to the information contained in these rankings. We study such optimal social choice functions under three different models, and underscore the important role played by scoring functions. In our worst-case model, no assumptions are made about the underlying distribution and we analyze the worst-case distortion-or degree to which the selected alternative does not maximize social welfare-of optimal social choice functions. In our average-case model, we derive optimal functions under neutral (or impartial culture) distributional models. Finally, a very general learning-theoretic model allows for the computation of optimal social choice functions (i.e., that maximize expected social welfare) under arbitrary, sampleable distributions. In the latter case, we provide both algorithms and sample complexity results for the class of scoring functions, and further validate the approach empirically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.