A neural network (NN)-based model of scalar hysteresis characteristics has been developed for modeling the behavior of magnetic materials. The virgin curve and a set of the first-order reversal branches can be stored preliminary in a system of three NNs. Different properties of magnetic materials can be simulated by a simple if-then type knowledge-based algorithm. Hysteresis characteristics of different materials predicted by the introduced model are compared with the results of the classical Preisach simulation technique. Comparisons are plotted in figures. Index Terms-Feedforward-type neural networks, Preisach model, scalar hysteresis model.
In the paper we report on the parallel enumeration of the degree sequences (their number is denoted by G(n)) and zerofree degree sequences (their number is denoted by (Gz(n)) of simple graphs on n = 30 and n = 31 vertices. Among others we obtained that the number of zerofree degree sequences of graphs on n = 30 vertices is Gz(30) = 5 876 236 938 019 300 and on n = 31 vertices is Gz(31) = 22 974 847 474 172 374. Due to Corollary 21 in [52] these results give the number of degree sequences of simple graphs on 30 and 31 vertices.
For a graph G with vertex set V(G) = {v1, v2, . . . , vn}, the extended double cover G* is a bipartite graph with bipartition (X, Y), X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}, where two vertices xi and yj are adjacent if and only if i = j or vi adjacent to vj in G. The double graph D[G] of G is a graph obtained by taking two copies of G and joining each vertex in one copy with the neighbors of corresponding vertex in another copy. In this paper we study energy and Laplacian energy of the graphs G* and D[G], L-spectra of Gk* the k-th iterated extended double cover of G. We obtain a formula for the number of spanning trees of G*. We also obtain some new families of equienergetic and L-equienergetic graphs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.