Rayleigh-scattering cross sections and volume-scattering coefficients are computed for standard air; they incorporate the variation of the depolarization factor with wavelength. Rayleigh optical depths are then calculated for the 1962 U.S. Standard Atmosphere and for five supplementary models. Analytic formulas are derived for each of the parameters listed. The new optical depths can be 1.3% lower to 3% higher at midvisible wavelengths and up to 10% higher in the UV region compared with previous calculations, in which a constant or incorrect depolarization factor was used. The dispersion of the depolarization factor is also shown to affect the Rayleigh phase function slightly, by approximately 1% in the forward, backscattered, and 90° scattering-angle directions.
An overview is presented of airborne systems for in situ measurements of aerosol particles, clouds and radiation that are currently in use on research aircraft around the world. Description of the technology is at a level sufficient for introducing the basic principles of operation and an extensive list of references for further reading is given. A number of newer instruments that implement emerging technology are described and the review concludes with a description of some of the most important measurement challenges that remain. This overview is a synthesis of material from a reference book that is currently in preparation and that will be published in 2012 by Wiley.
An overview is given of the First ISCCP Regional Experiment Arctic Clouds Experiment that was conducted during April-July 1998. The principal goal of the field experiment was to gather the data needed to examine the impact of arctic clouds on the radiation exchange between the surface, atmosphere, and space, and to study how the surface influences the evolution of boundary layer clouds. The observations will be used to evaluate and improve climate model parameterizations of cloud and radiation processes, satellite remote sensing of cloud and surface characteristics, and understanding of cloud-radiation feedbacks in the Arctic. The experiment utilized four research aircraft that flew over surface-based observational sites in the Arctic Ocean and at Barrow, Alaska. This paper describes the programmatic and scientific objectives of the project, the experimental design (including research platforms and instrumentation), the conditions that were encountered during the field experiment, and some highlights of preliminary observations, modeling, and satellite remote sensing studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.