Wild and managed bees are well documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change. Non-bee pollinators include flies, beetles, moths, butterflies, wasps, ants, birds, and bats, among others. Here we focus on non-bee insects and synthesize 39 field studies from five continents that directly measured the crop pollination services provided by non-bees, honey bees, and other bees to compare the relative contributions of these taxa. Non-bees performed 25-50% of the total number of flower visits. Although non-bees were less effective pollinators than bees per flower visit, they made more visits; thus these two factors compensated for each other, resulting in pollination services rendered by non-bees that were similar to those provided by bees. In the subset of studies that measured fruit set, fruit set increased with non-bee insect visits independently of bee visitation rates, indicating that non-bee insects provide a unique benefit that is not provided by bees. We also show that non-bee insects are not as reliant as bees on the presence of remnant natural or seminatural habitat in the surrounding landscape. These results strongly suggest that non-bee insect pollinators play a significant role in global crop production and respond differently than bees to landscape structure, probably making their crop pollination services more robust to changes in land use. Non-bee insects provide a valuable service and provide potential insurance against bee population declines.unmanaged pollinator | insect pollinator | fly | bee | beetle
Summary1. Plateau pikas Ochotona curzoniae are considered a pest species on the Tibetan Plateau because they compete with livestock for forage and their burrowing could contribute to soil erosion. The effectiveness of pest control programmes in Tibet has not been measured, and it is not known whether changes in livestock management have exacerbated problems with plateau pikas or compromised their control. This study measured the impact of control programmes and livestock management for forage conservation on populations of plateau pikas in alpine meadow in Naqu District, central Tibet, during 2004 and2005. 2. Current techniques for controlling plateau pikas in spring cause large reductions in abundance, but high density-dependent rates of increase result in no differences between treated and untreated populations by the following autumn. Rates of increase from spring to autumn are not influenced by standing plant biomass or concurrent grazing by yaks Bos grunniens and Tibetan sheep Ovis aries . 3. In autumn there was significantly lower biomass outside fenced areas with year-round livestock grazing compared with inside fenced areas with equivalent or higher numbers of plateau pikas but predominantly winter grazing by livestock. Inside fenced areas, control of plateau pikas in spring produced no detectable effect on standing plant biomass at the end of the following summer compared with uncontrolled populations of plateau pikas. 4. Regardless of their initial density, populations of plateau pikas declined rapidly over winter outside fenced areas where there was very low standing plant biomass in autumn. However, inside fenced areas with higher plant biomass in autumn, low-density populations of plateau pikas declined more slowly than high-density populations. 5. Synthesis and applications . Current control programmes have limited effect because populations of plateau pikas can recover in one breeding season. There was no apparent increase in forage production in areas where plateau pikas were controlled. However, plateau pikas appear to benefit from changes in grazing management, with low-density populations declining less over winter inside fenced areas than elsewhere. It was not evident that control programmes are warranted or that they will improve the livelihoods of Tibetan herders.
Summary1. Prey behavioural changes in response to predation risk can result in significant effects on prey body growth rates and reduced reproductive output, with resultant impacts on prey population dynamics. This paper examines the influence of habitat structure on these non-lethal impacts of predation using a model, field-based experimental system, with house mice as prey. 2. Three treatments were employed in eight 50 × 50 m pens that contained mice, but allowed access to a suite of free-living vertebrate predators, which included feral foxes, feral cats and native raptors: a treatment where the natural grassland vegetation in the pens was maintained at a height < 10 cm; a treatment where small, felled cypress pine trees covered with wire netting were added to low grassland vegetation to create refuge areas covering 10-15% of the area in a pen; and a treatment where predators were excluded from a 25 × 25 m section of some pens with an underlying grassland structure. A 5 × 5 grid of felled trees was added to grassland and predator-exclusion pens to allow assessment of mouse behaviour. 3. Mice in grassland pens avoided open areas, had lower body growth rates, and began breeding later in spring than mice in both predator-exclusion areas, where they foraged more readily in the open, and in refuge pens, where mice avoided open areas but had safe access to supplementary food located within the refuge. These results occurred despite mouse population densities being much lower in grassland pens, and presumably competition for food being much less, compared with under the other treatments. 4.The results indicate predators can have significant non-lethal impacts on prey, and these effects can be mediated by habitat structure.
The long-term impacts of wildfires on animal populations are largely unknown. We used time-series data based on a tracking index, from coastal NSW spanning 28 years after a wildfire, to investigate the relative influence of habitat structure, species interactions and climate on post-fire animal population dynamics. The fire had an immediate impact on habitat structure, reducing and simplifying vegetation cover, which then underwent post-fire successional change including an increase and plateau in tree canopy cover; an increase, stabilization and then decline in shrub cover; and an increase in ground litter cover. Population changes of different animal species were influenced by different components of successional change, but there was also evidence that species interactions were important. For example, bandicoots (Isoodon obesulus and Perameles nasuta combined) increased concurrent with an increase in shrub cover then declined at a faster rate than a direct association with senescing shrub cover would suggest, while the feral cat (Felis catus) population changed with the bandicoot population, suggesting a link between these species. Potoroos (Potorous tridactylus) increased 10 years after the fire concurrent with the closing tree canopy, but there was also evidence of a negative association with feral foxes (Vulpes vulpes). Variation in rainfall did not have significant effects on the population dynamics of any species. Our results suggest that changes in habitat structure play a key role in the post-fire dynamics of many ground-dwelling animals and hence different fire regimes are likely to influence animal dynamics through their effects on habitat structure. However, the role of predator-prey interactions, particularly with feral predators, is less clear and further study will require manipulative experiments of predators in conjunction with fire treatments to determine whether feral predator control should be integrated with fire management to improve outcomes for some native species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.