Invasive species threaten biodiversity globally, and invasive mammalian predators are particularly damaging, having contributed to considerable species decline and extinction. We provide a global metaanalysis of these impacts and reveal their full extent. Invasive predators are implicated in 87 bird, 45 mammal, and 10 reptile species extinctions-58% of these groups' contemporary extinctions worldwide. These figures are likely underestimated because 23 critically endangered species that we assessed are classed as "possibly extinct." Invasive mammalian predators endanger a further 596 species at risk of extinction, with cats, rodents, dogs, and pigs threatening the most species overall. Species most at risk from predators have high evolutionary distinctiveness and inhabit insular environments. Invasive mammalian predators are therefore important drivers of irreversible loss of phylogenetic diversity worldwide. That most impacted species are insular indicates that management of invasive predators on islands should be a global conservation priority. Understanding and mitigating the impact of invasive mammalian predators is essential for reducing the rate of global biodiversity loss.I nvasive mammalian predators ("invasive predators" hereafter) are arguably the most damaging group of alien animal species for global biodiversity (1-3). Species such as cats (Felis catus), rats (Rattus rattus), mongoose (Herpestes auropunctatus), and stoats (Mustela erminea) threaten biodiversity through predation (4, 5), competition (6), disease transmission (7), and facilitation with other invasive species (8). The decline and extinction of native species due to invasive predators can have impacts that cascade throughout entire ecosystems (9). For example, predation by feral cats and red foxes (Vulpes vulpes) has led to the decline or extinction of two thirds of Australia's digging mammal species over the past 200 y (10, 11). Reduced disturbance to topsoil in the absence of digging mammals has led to impoverished landscapes where little organic matter accumulates and rates of seed germination are low (10). In the Aleutian archipelago, predation of seabirds by introduced Arctic foxes (Alopex lagopus) has lowered nutrient input and soil fertility, ultimately causing vegetation to transform from grasslands to dwarf shrub/forb-dominated systems (12).Mitigating the negative impacts of invasive mammalian predators is a primary goal of conservation agencies worldwide (1,13,14). Regardless, there remains no global synthesis of the role of invasive predators in species declines and extinctions (but see refs. 3 and 15). Here, we quantify the number of bird, mammal, and reptile species threatened by, or thought to have become extinct (since AD 1500) due to, invasive mammalian predators. We use metaanalysis to examine taxonomic and geographic trends in these impacts and show how the severity of predator impacts varies according to species endemicity and evolutionary distinctiveness. Results and DiscussionIn total, 596 threatened and 142 extinc...
Alien predators are widely considered to be more harmful to prey populations than native predators. To evaluate this expectation, we conducted a meta-analysis of the responses of vertebrate prey in 45 replicated and 35 unreplicated field experiments in which the population densities of mammalian and avian predators had been manipulated. Our results showed that predator origin (native versus alien) had a highly significant effect on prey responses, with alien predators having an impact double that of native predators. Also the interaction between location (mainland versus island) and predator origin was significant, revealing the strongest effects with alien predators in mainland areas. Although both these results were mainly influenced by the huge impact of alien predators on the Australian mainland compared with their impact elsewhere, the results demonstrate that introduced predators can impose more intense suppression on remnant populations of native species and hold them further from their predator-free densities than do native predators preying upon coexisting prey.
Climatic changes associated with the El Niño Southern Oscillation (ENSO) can have a dramatic impact on terrestrial ecosystems worldwide, but especially on arid and semiarid systems, where productivity is strongly limited by precipitation. Nearly two decades of research, including both short‐term experiments and long‐term studies conducted on three continents, reveal that the initial, extraordinary increases in primary productivity percolate up through entire food webs, attenuating the relative importance of top‐down control by predators, providing key resources that are stored to fuel future production, and altering disturbance regimes for months or years after ENSO conditions have passed. Moreover, the ecological changes associated with ENSO events have important implications for agroecosystems, ecosystem restoration, wildlife conservation, and the spread of disease. Here we present the main ideas and results of a recent symposium on the effects of ENSO in dry ecosystems, which was convened as part of the First Alexander von Humboldt International Conference on the El Niño Phenomenon and its Global Impact (Guayaquil, Ecuador, 16–20 May 2005).
Long-term ecological studies are critical for providing key insights in ecology, environmental change, natural resource management and biodiversity conservation. In this paper, we briefly discuss five key values of such studies. These are: (1) quantifying ecological responses to drivers of ecosystem change; (2) understanding complex ecosystem processes that occur over prolonged periods; (3) providing core ecological data that may be used to develop theoretical ecological models and to parameterize and validate simulation models; (4) acting as platforms for collaborative studies, thus promoting multidisciplinary research; and (5) providing data and understanding at scales relevant to management, and hence critically supporting evidence-based policy, decision making and the management of ecosystems. We suggest that the ecological research community needs to put higher priority on communicating the benefits of long-term ecological studies to resource managers, policy makers and the general public. Long-term research will be especially important for tackling large-scale emerging problems confronting humanity such as resource management for a rapidly increasing human population, mass species extinction, and climate change detection, mitigation and adaptation. While some ecologically relevant, long-term data sets are now becoming more generally available, these are exceptions. This deficiency occurs because ecological studies can be difficult to maintain for long periods as they exceed the length of government administrations and funding cycles. We argue that the ecological research community will need to coordinate ongoing efforts in an open and collaborative way, to ensure that discoverable long-term ecological studies do not become a long-term deficiency. It is important to maintain publishing outlets for empirical field-based ecology, while simultaneously developing new systems of recognition that reward ecologists for the use and collaborative sharing of their long-term data sets. Funding schemes must be re-crafted to emphasize collaborative partnerships between field-based ecologists, theoreticians and modellers, and to provide financial support that is committed over commensurate time frames.
Top-order predators often have positive effects on biological diversity owing to their key functional roles in regulating trophic cascades and other ecological processes. Their loss has been identified as a major factor contributing to the decline of biodiversity in both aquatic and terrestrial systems. Consequently, restoring and maintaining the ecological function of top predators is a critical global imperative. Here we review studies of the ecological effects of the dingo Canis lupus dingo, Australia's largest land predator, using this as a case study to explore the influence of a top predator on biodiversity at a continental scale. The dingo was introduced to Australia by people at least 3500 years ago and has an ambiguous status owing to its brief history on the continent, its adverse impacts on livestock production and its role as an ecosystem architect. A large body of research now indicates that dingoes regulate ecological cascades, particularly in arid Australia, and that the removal of dingoes results in an increase in the abundances and impacts of herbivores and invasive mesopredators, most notably the red fox Vulpes vulpes. The loss of dingoes has been linked to widespread losses of small and medium-sized native mammals, the depletion of plant biomass due to the effects of irrupting herbivore populations and increased predation rates by red foxes. We outline a suite of conceptual models to describe the effects of dingoes on vertebrate populations across different Australian environments. Finally, we discuss key issues that require consideration or warrant research before the ecological effects of dingoes can be incorporated formally into biodiversity conservation programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.