The ever increasing challenges posed by the science projects in astronomy have skyrocketed the complexity of the new generation telescopes. Due to the climate and sky requirements, these highprecision instruments are generally located in remote areas, suffering from the harsh environments around it. These modern telescopes not only produce massive amounts of scientific data, but they also generate an enormous amount of operational information. The Atacama Large Millimeter/submillimeter Array (ALMA) is one of these unique instruments, generating more than 50 Gb of operational data every day while functioning in conditions of extreme dryness and altitude. To maintain the array working under extreme conditions, the engineering teams must check over 130,000 monitoring points, combing through the massive datasets produced every day. To make this possible, predictive tools are needed to identify, hopefully beforehand, the occurrence of failures in all the different subsystems. This work presents a novel fault detection scheme for one of these subsystems, the Intermediate Frequency Processors (IFP). This subsystem is critical to process the information gathered by each antenna and communicate it, reliably, to the correlator for processing. Our approach is based on echo state networks, a configuration of artificial neural networks, used to learn and predict the signal patterns. These patterns are later compared to the actual signal, to identify failure modes. Additional preprocessing techniques were also added since the signal-to-noise ratio of the data used was very low. The proposed scheme was tested in over seven years of data from 132 IFPs at ALMA, showing an accuracy of over 70%. Furthermore, the detection was done several months earlier, on average, when compared to what human operators did. These results help the maintenance procedures, increasing reliability while reducing humans' exposure to the harsh environment where the antennas are. Although applied to a specific fault, this technique is broad enough to be applied to other types of faults and settings.
Maintenance is one of the critical areas in operations in which a careful balance between preventive costs and the effect of failures is required. Thanks to the increasing data availability, decisionmakers can now use models to better estimate, evaluate, and achieve this balance. This work presents a maintenance scheduling model which considers prognostic information provided by a predictive system. In particular, we developed a prescriptive maintenance system based on run-to-failure signal segmentation and a Long Short Term Memory (LSTM) neural network. The LSTM network returns the prediction of the remaining useful life when a fault is present in a component. We incorporate such predictions and their inherent errors in a decision support system based on a stochastic optimization model, incorporating them via chance constraints. These constraints control the number of failed components and consider the physical distance between them to reduce sparsity and minimize the total maintenance cost. We show that this approach can compute solutions for relatively large instances in reasonable computational time through experimental results. Furthermore, the decision-maker can identify the correct operating point depending on the balance between costs and failure probability.INDEX TERMS prescriptive maintenance, chance constraints, remaining useful life.
The prognostics and health management disciplines provide an efficient solution to improve a system’s durability, taking advantage of its lifespan in functionality before a failure appears. Prognostics are performed to estimate the system or subsystem’s remaining useful life (RUL). This estimation can be used as a supply in decision-making within maintenance plans and procedures. This work focuses on prognostics by developing a recurrent neural network and a forecasting method called Prophet to measure the performance quality in RUL estimation. We apply this approach to degradation signals, which do not need to be monotonical. Finally, we test our system using data from new generation telescopes in real-world applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.