Our recent genome-wide allelotyping analysis of gallbladder carcinoma identified 3p, 8p, 9q and 22q as chromosomal regions with frequent loss of heterozygosity. The present study was undertaken to more precisely identify the presence and location of regions of frequent allele loss involving those chromosomes in gallbladder carcinoma. Microdissected tissue from 24 gallbladder carcinoma were analysed for PCR-based loss of heterozygosity using 81 microsatellite markers spanning chromosome 3p (n=26), 8p (n=14), 9q (n=29) and 22q (n=12) regions. We also studied the role of those allele losses in gallbladder carcinoma pathogenesis by examining 45 microdissected normal and dysplastic gallbladder epithelia accompanying gallbladder carcinoma, using 17 microsatellite markers. Overall frequencies of loss of heterozygosity at 3p (100%), 8p (100%), 9q (88%), and 22q (92%) sites were very high in gallbladder carcinoma, and we identified 13 distinct regions undergoing frequent loss of heterozygosity in tumours. Allele losses were frequently detected in normal and dysplastic gallbladder epithelia. There was a progressive increase of the overall loss of heterozygosity frequency with increasing severity of histopathological changes. Allele losses were not random and followed a sequence. This study refines several distinct chromosome 3p, 8p, 9q and 22q regions undergoing frequent allele loss in gallbladder carcinoma that will aid in the positional identification of tumour suppressor genes involved in gallbladder carcinoma pathogenesis. British Journal of Cancer (2002) Gallbladder carcinoma (GBC) is a relatively uncommon neoplasm which demonstrates considerable geographic and gender variation in incidence (Albores-Saavedra and Henson, 2000). For unknown reasons, it is one of the most frequent neoplasms in Chile, where it is the leading cause of cancer deaths in females (Lazcano-Ponce et al, 2001). It has been well established that invasive GBC is preceded by preneoplastic lesions, including dysplastic changes of the gallbladder epithelium (Albores-Saavedra and Henson, 2000). There is a very limited information about the molecular changes involved in the pathogenesis of GBC (Wistuba and Albores-Saavedra, 1999).It is now well recognised that tumourigenesis is a multistep process resulting from the accumulation of sequential genetic alterations (Fearon and Vogelstein, 1990). In addition to oncogene activation, inactivation of tumour suppressor genes (TSGs) has been shown to play an important role in tumourigenesis (Fearon and Vogelstein, 1990). Allelic loss, manifested as loss of heterozygosity (LOH) at polymorphic loci, is recognised as a hallmark of tumour suppressor genes, whose other allele is inactivated by point mutations or by some other mechanism (Knudson, 1985). Thus, the finding of chromosomal regions with frequent incidence of LOH in a neoplasm suggests that those regions may harbour one or more TSGs.Our recent genome-wide allelotyping analysis on GBC indicated that allelic losses at multiple sites of the genome are freque...
The ever increasing challenges posed by the science projects in astronomy have skyrocketed the complexity of the new generation telescopes. Due to the climate and sky requirements, these highprecision instruments are generally located in remote areas, suffering from the harsh environments around it. These modern telescopes not only produce massive amounts of scientific data, but they also generate an enormous amount of operational information. The Atacama Large Millimeter/submillimeter Array (ALMA) is one of these unique instruments, generating more than 50 Gb of operational data every day while functioning in conditions of extreme dryness and altitude. To maintain the array working under extreme conditions, the engineering teams must check over 130,000 monitoring points, combing through the massive datasets produced every day. To make this possible, predictive tools are needed to identify, hopefully beforehand, the occurrence of failures in all the different subsystems. This work presents a novel fault detection scheme for one of these subsystems, the Intermediate Frequency Processors (IFP). This subsystem is critical to process the information gathered by each antenna and communicate it, reliably, to the correlator for processing. Our approach is based on echo state networks, a configuration of artificial neural networks, used to learn and predict the signal patterns. These patterns are later compared to the actual signal, to identify failure modes. Additional preprocessing techniques were also added since the signal-to-noise ratio of the data used was very low. The proposed scheme was tested in over seven years of data from 132 IFPs at ALMA, showing an accuracy of over 70%. Furthermore, the detection was done several months earlier, on average, when compared to what human operators did. These results help the maintenance procedures, increasing reliability while reducing humans' exposure to the harsh environment where the antennas are. Although applied to a specific fault, this technique is broad enough to be applied to other types of faults and settings.
SUMMARYMobile robot systems are being used more often in tasks that protect human operators from dangerous environments, but these benefits can be easily lost if the robots spend much of their time being repaired. This implies that any increment in their reliability will also improve their benefits. One way to achieve this is by adding redundant elements to the robot, but this adds complexity and cost to the design. On the other hand, cooperative mobile robots formed by members with the same basic structure provide a natural redundancy of elements, which may be used for reliability improvement. This work presents an architecture that takes advantage of the analytical and sensor redundancy present in groups of cooperative mobile robots in order to increase the reliability of the whole system. First, the design of the architecture is portrayed and the faults to be detected are described. The different layers of the system are then explained and analyzed using several simulations to test their capabilities and limitations. Finally, the experimental results on a group of small mobile robots are shown, validating the results delivered by simulations. These results show that the proposed architecture is able to detect and isolate correctly most of the faults tested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.