Objective: This article provides a review of empirical studies of automated vehicle takeovers and driver modeling to identify influential factors and their impacts on takeover performance and suggest driver models that can capture them. Background: Significant safety issues remain in automated-to-manual transitions of vehicle control. Developing models and computer simulations of automated vehicle control transitions may help designers mitigate these issues, but only if accurate models are used. Selecting accurate models requires estimating the impact of factors that influence takeovers. Method: Articles describing automated vehicle takeovers or driver modeling research were identified through a systematic approach. Inclusion criteria were used to identify relevant studies and models of braking, steering, and the complete takeover process for further review. Results: The reviewed studies on automated vehicle takeovers identified several factors that significantly influence takeover time and post-takeover control. Drivers were found to respond similarly between manual emergencies and automated takeovers, albeit with a delay. The findings suggest that existing braking and steering models for manual driving may be applicable to modeling automated vehicle takeovers. Conclusion: Time budget, repeated exposure to takeovers, silent failures, and handheld secondary tasks significantly influence takeover time. These factors in addition to takeover request modality, driving environment, non-handheld secondary tasks, level of automation, trust, fatigue, and alcohol significantly impact post-takeover control. Models that capture these effects through evidence accumulation were identified as promising directions for future work. Application: Stakeholders interested in driver behavior during automated vehicle takeovers may use this article to identify starting points for their work.
Objective: The objective of this study was to analyze a set of driver performance and physiological data using advanced machine learning approaches, including feature generation, to determine the best-performing algorithms for detecting driver distraction and predicting the source of distraction. Background: Distracted driving is a causal factor in many vehicle crashes, often resulting in injuries and deaths. As mobile devices and in-vehicle information systems become more prevalent, the ability to detect and mitigate driver distraction becomes more important. Method: This study trained 21 algorithms to identify when drivers were distracted by secondary cognitive and texting tasks. The algorithms included physiological and driving behavioral input processed with a comprehensive feature generation package, Time Series Feature Extraction based on Scalable Hypothesis tests. Results: Results showed that a Random Forest algorithm, trained using only driving behavior measures and excluding driver physiological data, was the highest-performing algorithm for accurately classifying driver distraction. The most important input measures identified were lane offset, speed, and steering, whereas the most important feature types were standard deviation, quantiles, and nonlinear transforms. Conclusion: This work suggests that distraction detection algorithms may be improved by considering ensemble machine learning algorithms that are trained with driving behavior measures and nonstandard features. In addition, the study presents several new indicators of distraction derived from speed and steering measures. Application: Future development of distraction mitigation systems should focus on driver behavior–based algorithms that use complex feature generation techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.