Classical swine fever (CSF) is an OIE-listed disease that can have a severe impact on the swine industry. User-friendly, sensitive, rapid diagnostic tests that utilize low-cost field-deployable instruments for CSF diagnosis can be useful for disease surveillance and outbreak monitoring. In this study, we describe validation of a new probe-based insulated isothermal reverse transcriptase PCR (iiRT-PCR) assay for rapid detection of classical swine fever virus (CSFV) on a compact, user-friendly device (POCKIT(™) Nucleic Acid Analyzer) that does not need data interpretation by the user. The assay accurately detected CSFV RNA from a diverse panel of 33 CSFV strains representing all three genotypes plus an additional in vitro-transcribed RNA from cloned sequences representing a vaccine strain. No cross-reactivity was observed with a panel of 18 viruses associated with livestock including eight other pestivirus strains (bovine viral diarrhoea virus type 1 and type 2, border disease virus, HoBi atypical pestivirus), African swine fever virus, swine vesicular disease virus, swine influenza virus, porcine respiratory and reproductive syndrome virus, porcine circovirus 1, porcine circovirus 2, porcine respiratory coronavirus, vesicular exanthema of swine virus, bovine herpes virus type 1 and vesicular stomatitis virus. The iiRT-PCR assay accurately detected CSFV as early as 2 days post-inoculation in RNA extracted from serum samples of experimentally infected pigs, before appearance of clinical signs. The limit of detection (LOD95% ) calculated by probit regression analysis was 23 copies per reaction. The assay has a sample to answer turnaround time of less than an hour using extracted RNA or diluted or low volume of neat serum. The user-friendly, compact device that automatically analyses and displays results could potentially be a useful tool for surveillance and monitoring of CSF in a disease outbreak.
Porcine respiratory disease complex (PRDC) is one of the most important health concerns for pig producers and can involve multiple viral and bacterial pathogens. No simple, single-reaction diagnostic test currently exists for the simultaneous detection of major pathogens commonly associated with PRDC. Furthermore, the detection of most of the bacterial pathogens implicated in PRDC currently requires time-consuming culture-based methods that can take several days to obtain results. In this study, a novel prototype automated microarray that integrates and automates all steps of post-PCR microarray processing for the simultaneous detection and typing of eight bacteria and viruses commonly associated with PRDC is described along with associated multiplex reverse transcriptase PCR. The user-friendly assay detected and differentiated between four viruses [porcine reproductive and respiratory syndrome virus (PRRSV), influenza A virus, porcine circovirus type 2, porcine respiratory corona virus], four bacteria (Mycoplasma hyopneumoniae, Pasteurella multocida, Salmonella enterica serovar Choleraesuis, Streptococcus suis), and further differentiated between type 1 and type 2 PRRSV as well as toxigenic and non-toxigenic P. multocida. The assay accurately identified and typed a panel of 34 strains representing the eight targeted pathogens and was negative when tested with 34 relevant and/or closely related non-target bacterial and viral species. All targets were also identified singly or in combination in a panel of clinical lung samples and/or experimentally inoculated biological material.
Microarray technology can be useful for pathogen detection as it allows simultaneous interrogation of the presence or absence of a large number of genetic signatures. However, most microarray assays are labour-intensive and time-consuming to perform. This study describes the development and initial evaluation of a multiplex reverse transcription (RT)-PCR and novel accompanying automated electronic microarray assay for simultaneous detection and differentiation of seven important viruses that affect swine (foot-and-mouth disease virus [FMDV], swine vesicular disease virus [SVDV], vesicular exanthema of swine virus [VESV], African swine fever virus [ASFV], classical swine fever virus [CSFV], porcine respiratory and reproductive syndrome virus [PRRSV] and porcine circovirus type 2 [PCV2]). The novel electronic microarray assay utilizes a single, user-friendly instrument that integrates and automates capture probe printing, hybridization, washing and reporting on a disposable electronic microarray cartridge with 400 features. This assay accurately detected and identified a total of 68 isolates of the seven targeted virus species including 23 samples of FMDV, representing all seven serotypes, and 10 CSFV strains, representing all three genotypes. The assay successfully detected viruses in clinical samples from the field, experimentally infected animals (as early as 1 day post-infection (dpi) for FMDV and SVDV, 4 dpi for ASFV, 5 dpi for CSFV), as well as in biological material that were spiked with target viruses. The limit of detection was 10 copies/μl for ASFV, PCV2 and PRRSV, 100 copies/μl for SVDV, CSFV, VESV and 1,000 copies/μl for FMDV. The electronic microarray component had reduced analytical sensitivity for several of the target viruses when compared with the multiplex RT-PCR. The integration of capture probe printing allows custom onsite array printing as needed, while electrophoretically driven hybridization generates results faster than conventional microarrays that rely on passive hybridization. With further refinement, this novel, rapid, highly automated microarray technology has potential applications in multipathogen surveillance of livestock diseases.
Differential diagnosis of diseases that share common clinical signs typically requires the performance of multiple independent diagnostic tests to confirm diagnosis. Diagnostic tests that can detect and discriminate between multiple differential pathogens in a single reaction may expedite, reduce costs, and streamline the diagnostic testing workflow. Livestock haemorrhagic diseases like classical swine fever (CSF), African swine fever (ASF), and vesicular diseases, such as foot-and-mouth disease (FMD), vesicular stomatitis (VS), and swine vesicular disease (SVD) can have an enormous impact on the livestock industry and economy of countries that were previously free of the diseases. Thus, rapid diagnosis of these diseases is critical for disease control. Here, we describe the development and initial laboratory validation of a novel fully automated user-developed assay for simultaneous detection and differentiation of multiple viruses of veterinary importance in a single reaction with minimal user-intervention. The user only performs sample loading, placement of consumables and reagents, selection and initiation of assay while all other processes (i.e., nucleic acid extraction, multiplex RT-PCR, reverse dot blot detection and result reporting) are performed fully automated. The current assay has a turn-around time of approximately 6 hr and can simultaneously process up to 24 samples. The automated assay accurately and specifically detected 37 laboratory amplified strains of the five target viruses, including all seven serotypes of FMD virus, three genotypes of CSF virus, and two serotypes of VS virus. The assay also detected targeted viruses in a variety of clinical samples collected from infected animals, such as oral fluid, oral swab, nasal swab, whole blood, serum, as well as tonsil, spleen, kidney, and ileum. No cross-reactivity was observed with 15 nontarget viruses that affect livestock and samples from clinically healthy animals. To our knowledge, this is the first fully automated and integrated assay for simultaneous detection of multiple high consequence veterinary pathogens.
Species identification through genetic barcoding can augment traditional taxonomic methods, which rely on morphological features of the specimen. Such approaches are especially valuable when specimens are in poor condition or comprise very limited material, a situation that often applies to chiropteran (bat) specimens submitted to the Canadian Food Inspection Agency for rabies diagnosis. Coupled with phenotypic plasticity of many species and inconclusive taxonomic keys, species identification using only morphological traits can be challenging. In this study, a microarray assay with associated PCR of the mitochondrial cytochrome c oxidase subunit I (COI) gene was developed for differentiation of 14 bat species submitted to the Canadian Food Inspection Agency from 1985–2012 for rabies diagnosis. The assay was validated with a reference collection of DNA from 153 field samples, all of which had been barcoded previously. The COI gene from 152 samples which included multiple specimens of each target species were successfully amplified by PCR and accurately identified by the microarray. One sample that was severely decomposed failed to amplify with PCR primers developed in this study, but amplified weakly after switching to alternate primers and was accurately typed by the microarray. Thus, the chiropteran microarray was able to accurately differentiate between the 14 species of Canadian bats targeted. This PCR and microarray assay would allow unequivocal identification to species of most, if not all, bat specimens submitted for rabies diagnosis in Canada.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.