-Due to complex envelope and phase modulation employed in modern transmitters it is necessary to use power amplifiers that have high linearity. Linear power amplifiers (classes A, B and AB) are commonly used, but they suffer from low efficiency especially if the transmitted signal has high peak to average power ratio (PAPR). Kahn's technique based on envelope elimination and restoration (EER) is based on idea that high efficiency power supply (envelope amplifier) could be used to modulate the envelope of high efficient non linear power amplifiers (classes D or E). This paper presents solutions for power amplifier that performs envelope modulation and class E amplifier that is used as a non linear amplifier. The envelope amplifier is implemented as a multilevel converter in series with linear regulator and can provide up to 100 W of instantaneous power and reproduce 2 MHz sine wave. The implemented Class E amplifier can operate at 120 MHz with efficiency near to 85%. The envelope amplifier and class E amplifier have been integrated and efficiency and linearity of the implemented transmitter has been measured and presented.
Automotive alternator efficiency has become of a prime importance for the reduction of car's consumption. The paper shows the experimental repartition of various losses. It is shown that, especially for high speed operation, the iron losses become an important part of the total losses. These iron losses are very difficult to determine because classic models are not adapted. Concerning the stator losses, the flux density is not in the sheet plane, so classic Berttoti models may become inaccurate. Iron rotor losses are mainly due to the induced currents in the massive materials due to the modulation of the rotor stator permeance variation. In this paper, we propose, in a first part, to compare on the basis of experimental results, the variation of the iron losses as a function of the stator windings and in a second part, an estimation of the rotor iron losses by comparing 3D Finite element and experimental results.
Abstract-Modern transmitters usually have to amplify and transmit complex communication signals with simultaneous envelope and phase modulation. Due to this property of the transmitted signal, linear power amplifiers (class A, B or AB) are usually employed as a solution for the power amplifier stage. These amplifiers have high linearity, but suffer from low efficiency when the transmitted signal has high peak-to-average power ratio. The Kahn envelope elimination and restoration (EER) technique is used to enhance efficiency of RF transmitters, by combining highly efficient, nonlinear RF amplifier (class D or E) with a highly efficient envelope amplifier in order to obtain linear and highly efficient RF amplifier. This paper presents solutions for the power supply that acts as the envelope amplifier and class E amplifier that is used as a nonlinear amplifier. The envelope amplifier is implemented as a multilevel converter in series with a linear regulator and can provide up to 100 W of peak power and reproduce sine wave of 2 MHz, while the implemented class E amplifier operates at 120 MHz with an efficiency near to 90%. The envelope amplifier and class E amplifier have been integrated in order to implement the Kahn's technique transmitter and series of experiments have been conducted in order to characterize the implemented transmitter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.