A new test, called the seismic cone penetration test (SCPT) is described.A small rugged velocity seismometer has been incorporated into an electronic cone penetrometer.The combination of the seismic downhole method and the CPT logging provide an extremely rapid, reliable and economic means of determining stratigraphic, strength and modulus information in one sounding.Results using the seismic cone penetration test are presented and compared to conventional in-situ techniques.
Under the Pacific Ocean off the south coast of Peru the Nazca tectonic plate subducts beneath the South American plate, creating a high seismic hazard along this coast. Onshore site development and preparation for LNG plant and export terminal construction in this area required a significant volume of excavation throughout the process area and storage area, which are located on a plateau cut to elevation 125 m, separated from the marine loading terminal by coastal cliffs. Steep cuts were incised into the plateau to build a 3.5H:1V sleeper way to allow the LNG cryogenic pipeline system to traverse down the cliff onto a marine jetty to reach the loading terminal. Approximately 230 thousand cubic meters of spoils resulting from the excavation of the sleeper way were pushed over the cliff onto the undercliff area. Additionally, about 630 thousand cubic meters of the stripped material from the process and tank area was pushed over the cliff onto existing colluvial materials in the undercliff. Soon thereafter a crack measuring about 0.3 m in width with a vertical displacement of 0.4 m, and sympathetic cracking occurred sub-parallel to the shoreline at numerous locations across the undercliff area. A translational mass movement with a volume of approximately 18 million cubic meters was identified following the installation of inclinometers. Regrading of the spoil piles was designed and implemented causing the mass movement to stop. However, simplified and detailed slope stability analyses indicated that seismically-induced permanent slope displacements should be expected during significant earthquake events. A cumulative distribution function (CDF) that incorporated slope parameters and ground motion uncertainty was developed for slope displacements using the Newmark procedure. CDFs were developed conditional to the occurrence of the design earthquake events. Design displacements were selected based on owner risk tolerance and then incorporated into the design of the pipeline through: (a) the installation of a thicker wall at the location where displacements were expected; and (b) installation of an additional extensional loop on the pipeline. Shortly after completion of regrading to stabilize the mass movement, the slope was subjected to an M = 8.0 earthquake that caused permanent slope displacements in the range of 10 to 80 mm across the sliding plane. This paper describes slope performance from inclinometer and surface movement marker data following the M = 8.0 earthquake, comparison to the results of a probabilistic prediction of seismicallyinduced permanent slope displacements using simplified procedures, and discussion for the analysis and design of slopes subject to earthquake induced ground motions and incorporation into subsea design basis.
This paper presents a case study of a landslide with the potential to affect four operating high-pressure natural gas pipelines located in the south-central US state of Mississippi. This case study follows a landslide hazard management process: beginning with landslide identification, through pipeline monitoring using strain gauges with an automated early alert system, to detection of landslide movement and its effects on the pipeline, completion of a geotechnical subsurface investigation, conceptual geotechnical mitigation planning, landslide stabilization design and construction, and stress relief excavation. Each step of the landslide hazard management process is described in this case study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.