Introduction
Arsenic-72 (72As; 2.49 MeV β+, 26 h) and 77As (0.683 MeV β−, 38.8 h) have nuclear properties useful for positron emission tomography (PET) and radiotherapy applications, respectively. Their half-lives are sufficiently long for targeting tumors with antibodies, as well as peptides. Potential radiopharmaceuticals based on radioarsenic require development of suitable bifunctional chelates for stable conjugation of arsenic to vectors under in vivo conditions at high dilution.
Methods
The thiophilic nature of arsenic led to the synthesis and characterization of a simple trithiol ligand and its arsenic complex, and radiolabeling studies at the no carrier added (NCA) 77 As level.
Results
1H- and 13C-NMR spectroscopy, electrospray ionization mass spectrometry (ESI-MS), and single crystal X-ray diffraction were used to characterize the trithiol ligand and its arsenic(III) complex. Radiotracer studies with no carrier added (NCA) 77As resulted in high radiolabeling yields (>96%) with high in vitro stability.
Conclusions
The high yield and stability of a single NCA 77As trithiol complex indicates this framework is suitable for developing matched pair agents for non-invasive in vivo PET imaging and radiotherapy of tumors with 72,77As. This is the first reported chelate developed for NCA radioarsenic and studies are underway for developing a trithiol bifunctional chelate conjugated to a targeting vector, such as a peptide or monoclonal antibody.
A simple column chromatographic method was developed to isolate 77As (94 ± 6% (EtOH/HCl); 74 ± 11 (MeOH)) from germanium for potential use in radioimmunotherapy. The separation of arsenic from germanium was based on their relative affinities for different chromatographic materials in aqueous and organic environments. Using an organic or mixed mobile phase, germanium was selectively retained on a silica gel column as germanate, while arsenic was eluted from the column as arsenate. Subsequently, enriched 76Ge (98 ± 2) was recovered for reuse by elution with aqueous solution (neutral to basic). Greater than 98% radiolabeling yield of a 77As-trithiol was observed from methanol separated [77As]arsenate [17].
The combined in vitro stability of As-trithiol-BBN(7-14)NH and the biodistribution results demonstrate its high in vivo stability, making the trithiol a promising platform for developing radioarsenic-based theranostic radiopharmaceuticals.
Arsenic-72 ((72)As) and (77)As have nuclear properties useful for positron emission tomography (PET) and radiotherapy, respectively. The thiophilic nature of arsenic led to the evaluation of dithioarylarsines for potential use in radiopharmaceuticals. Several dithioarylarsines were synthesized from their arylarsonic acids and dithiols and were fully characterized by NMR, ESI-MS, and X-ray crystallography. This chemistry was translated to the no-carrier-added (nca) (77)As level. Because arsenic was available at the nca nanomolar level only as [(77)As]arsenate, this required addition of an aryl group directly to the As to form the [(77)As]arylarsonic acid. The [(77)As]arsenate was reduced from (77)As (V) to (77)As (III), and a modified Bart reaction was used to incorporate the aryl ring onto the (77)As, which was followed by dithiol addition. Various modifications and optimizations resulted in 95% radiochemical yield of nca [(77)As]p-ethoxyphenyl-1,2-ethanedithiolatoarsine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.