Over 100 doublets were designed using a polychromatic gradient-index (GRIN) design model to analyze the benefits of radial GRIN profiles in broadband visible to short-wave infrared (vis-SWIR) imaging system applications. The polychromatic GRIN design model can be applied to any GRIN material, but for this work, titania silicate glass was investigated. A multielement design study with Petzval lenses was performed to show improved color correction when using GRIN elements. Results from the doublet and Petzval designs illustrate that in broadband vis-SWIR imaging applications, GRIN can either improve system performance or reduce a cemented homogeneous doublet to a GRIN singlet.
A 40-deg full field-of-view high-performance eyepiece design utilizing a polymer spherical gradient-index (GRIN) optical element is presented. In the design process, the GRIN lens material is constrained to current manufacturing capabilities. Several spherical GRIN lens blanks are fabricated from a thermoformable axial GRIN polymethyl methacrylate polystyrene copolymer material. One is diamond turned into a lens for the eyepiece, and the additional blanks are used to characterize the fabrication process. The spherical GRIN profile is evaluated in the original design, and a tolerance analysis is provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.