Urban populations are growing rapidly throughout the Asia-Pacific region. Cities are vulnerable to the health impacts of climate change because of their concentration of people and infrastructure, the physical (geographical, material, and structural) attributes of the built environment, and the ecological interdependence with the urban ecosystem. Australia is one of the most highly urbanized countries in the region and its already variable climate is set to become hotter and drier with climate change. Climate change in Australia is expected to increase morbidity and mortality from thermal stress, bacterial gastroenteritis, vector-borne disease, air pollution, flooding, and bushfires. The cost and availability of fresh water, food, and energy will also likely be affected. The more vulnerable urban populations, including the elderly, socioeconomically disadvantaged groups, and those with underlying chronic disease, will be most affected. Adaptation strategies need to address this underlying burden of disease and inequity as well as implement broad structural changes to building codes and urban design, and infrastructure capacity. In doing so, cities provide opportunities to realize "co-benefits" for health (eg, from increased levels of physical activity and improved air quality). With evidence that climate change is underway, the need for cities to be a focus in the development of climate adaptation strategies is becoming more urgent.
The design of adaptation strategies that promote urban health and well-being in the face of climate change requires an understanding of the feedback interactions that take place between the dynamical state of a city, the health of its people, and the state of the planet. Complexity, contingency and uncertainty combine to impede the growth of such systemic understandings. In this paper we suggest that the collaborative development of conceptual models can help a group to identify potential leverage points for effective adaptation. We describe a three-step procedure that leads from the development of a high-level system template, through the selection of a problem space that contains one or more of the group’s adaptive challenges, to a specific conceptual model of a sub-system of importance to the group. This procedure is illustrated by a case study of urban dwellers’ maladaptive dependence on private motor vehicles. We conclude that a system dynamics approach, revolving around the collaborative construction of a set of conceptual models, can help communities to improve their adaptive capacity, and so better meet the challenge of maintaining, and even improving, urban health in the face of climate change.
BackgroundWithin an Australian context, the medium to long-term health impacts of climate change are likely to be wide, varied and amplify many existing disorders and health inequities. How the health system responds to these challenges will be best considered in the context of existing health facilities and services. This paper provides a snapshot of the understanding that Australian health planners have of the potential health impacts of climate change.MethodsThe first author interviewed (n=16) health service planners from five Australian states and territories using an interpretivist paradigm. All interviews were digitally recorded, key components transcribed and thematically analysed.ResultsResults indicate that the majority of participants were aware of climate change but not of its potential health impacts. Despite this, most planners were of the opinion that they would need to plan for the health impacts of climate change on the community.ConclusionWith the best available evidence pointing towards there being significant health impacts as a result of climate change, now is the time to undertake proactive service planning that address market failures within the health system. If considered planning is not undertaken then Australian health system can only deal with climate change in an expensive ad hoc, crisis management manner. Without meeting the challenges of climate change to the health system head on, Australia will remain unprepared for the health impacts of climate change with negative consequences for the health of the Australian population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.