Controversy exists as to the role of oxygen-derived free radicals in tissue injury and the no-reflow phenomenon in reperfusion injury after ischemia. In this study using an experimental rat model, left hepatic lobar ischemia followed by reperfusion resulted in an increase of serum glutamic pyruvic transaminase at 30 min with concomitant histological evidence of hepatocellular necrosis at 24 hr. In the in vivo liver microcirculation, reperfusion after ischemia resulted in an initial transient return of blood flow, but stasis of blood flow later developed in the liver sinusoids. Thus a no-reflow phenomenon in the microcirculation was demonstrated. Intravenous administration of a long-acting form of superoxide dismutase (half-life 6 hr, dose 4 or 8 mg/kg) significantly decreased the hepatocellular necrosis and reduced the microcirculatory stasis in the liver sinusoids. These studies established the important contribution of the no-reflow phenomenon in ischemia-reperfusion injury to the liver and the participation of superoxide anions in mediating the no-reflow phenomenon.
Extrapolation of thrombin-enhanced MMP-1 expression in cultured endometrial stromal and decidual cells to the in vivo pregnant state provides an explanation for the strong association between placental abruption and preterm membrane rupture.
Oxygen-derived free radicals and leukocytes have been implicated in the pathogenesis of ischemia-reperfusion injury. This study aimed at determining, by using biochemical and histochemical techniques, whether an accumulation of neutrophils occurs in the ischemic reperfused rat liver and whether superoxide free radicals play a role in mediating this neutrophil accumulation. Hepatic ischemia was induced by occluding blood supply to the left and median lobes, and reperfusion was reinstituted by releasing the occlusion. Myeloperoxidase activity of the liver was measured with a tetramethylbenzidine-H2O2 assay after removal of glutathione (by dialysis) and in the presence of 3-aminotriazole (catalase inhibitor). A modification of Graham and Karnovsky's method was used to stain neutrophils in liver frozen sections, and the number of neutrophils was counted. Results showed that ischemia-reperfusion of the liver produced a 4.4-fold increase in myeloperoxidase activity (from 0.073 +/- 0.009 to 0.320 +/- 0.017 units/mg liver, means +/- SE), which was proportional to the number of neutrophils (3.1-fold increase from 18 +/- 7 to 57 +/- 4 cells/mm2) in the liver tissue. Pretreatment with long-acting superoxide dismutase significantly attenuated the elevated myeloperoxidase activity and the number of neutrophils. These results indicate that reperfusion after a period of ischemia induces an accumulation of neutrophils in the liver, and superoxide anion free radicals are important mediators in the mechanism of this neutrophil accumulation.
Ovarian steroids and/or premenstrual endometrial hypoxia are thought to restore the endometrial vasculature shed during menstruation by elevating endometrial vascular endothelial growth factor (VEGF) levels. During the luteal phase, VEGF levels peak, progesterone induces estradiol (E(2))-primed human endometrial stromal cells (HESCs) to decidualize and express tissue factor (TF), and endometrial vascular permeability is enhanced. The latter would present circulating clotting factors to decidual cell-expressed TF to form local thrombin. HESCs were incubated in serum-supplemented medium containing vehicle (control) or 10(-8) M E(2) or 10(-7) M medroxyprogesterone acetate (MPA) or E(2) + MPA for 7 d to induce decidualization, while monolayers of human endometrial glandular epithelial cells (HEGECs) formed during 4-d incubation of glands. The medium was exchanged for a defined medium containing corresponding vehicle or steroids +/- thrombin under normoxia or hypoxia (0-1% O(2)). Hypoxia enhanced secreted immunoreactive VEGF levels by severalfold in HESCs and HEGECs, but the steroids did not affect VEGF output in either cell type under normoxia or hypoxia. In E(2) + MPA-decidualized HESCs, VEGF levels were elevated by 0.1 U/ml of thrombin, and 0.5-2.5 U/ml of thrombin elicited maximum effects. The addition of 0.5 U/ml of thrombin evoked a time-dependent enhancement of VEGF levels and about an 8-fold increase at 48 h (P < 0.02; n = 6). Northern blotting indicated that E(2) + MPA-decidualized HESCs expressed VEGF(121), VEGF(165), and VEGF(189) mRNA, which were enhanced severalfold during 5- to 20-h incubation with thrombin. Moreover, TRAP, a synthetic peptide activator of the constitutively expressed protease activated receptor-1 thrombin receptor in decidualized HESCs, also elevated secreted VEGF levels. By contrast, HEGECs were unresponsive to thrombin added alone or with ovarian steroids. These results suggest that thrombin formed by progestin-augmented TF levels acts as an autocrine enhancer of VEGF expression in decidualized HESCs. Because angiogenesis occurs in a matrix of decidualized HESCs, these in vitro results provide a novel mechanism to account for both the peak in VEGF and angiogenesis in luteal phase human endometrium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.