Obtaining primary human endometrial stromal cells (HESCs) for in vitro studies is limited by the scarcity of adequate human material and the inability to passage these cells in culture for long periods. Immortalization of these cells would greatly facilitate studies; however, the process of immortalization often results in abnormal karyotypes and aberrant functional characteristics. To meet this need, we have introduced telomerase into cultured HESCs to prevent the normal shortening of telomeres observed in adult somatic cells during mitosis. We have now developed and analyzed a newly immortalized HESC line that contains no clonal chromosomal structural or numerical abnormalities. In addition, when compared with the primary unpassaged parent cells, the new cell line displayed similar biochemical endpoints after treatment with ovarian steroids. Classical decidualization response to estradiol plus medroxyprogesterone acetate were seen in both morphologically, and progestin was seen to induce or regulate the expression of IGF binding protein-1, fibronectin, prolactin, tissue factor, plasminogen activator inhibitor-1, and Fas/Fas ligand. In summary, an immortalized HESC line has been developed that is karyotypically, morphologically, and phenotypically similar to the primary parent cells, and it is a powerful and consistent resource for in vitro work.
The human endometrium is a dynamic tissue, which undergoes cycles of growth and regression with each menstrual cycle. Adult progenitor stem cells are likely responsible for this remarkable regenerative capacity; these same progenitor stem cells may also have an enhanced capacity to generate endometriosis if shed in a retrograde fashion. The progenitor stem cells reside in the uterus, however less committed mesenchymal stem cells may also travel from other tissues such as bone marrow to repopulate the progenitor population. Mesenchymal stem cells are also involved in the pathogenesis of endometriosis and may be the principle source of endometriosis outside of the peritoneal cavity when they differentiate into endometriosis in ectopic locations. Finally, besides progenitor stem cells, recent publications have identified multipotent stem cells in the endometrium. These multipotent stem cells are a readily available source of cells that are useful in tissue engineering and regenerative medicine. Endometrial stem cells have been used to generate chondrocytes, myocytes, neurons and adiposites in vitro as well as to replace dopiminergic neurons in a murine model of Parkinson disease.
OBJECTIVE-Preimplantation factor (PIF) is a novel, 15 amino acid peptide, secreted by viable embryos. This study aims to elucidate PIF's effects in human endometrial stromal cells (HESC) decidualized by estrogen and progestin, which mimics the pre-implantation milieu, and in first trimester decidua cultures (FTDC).STUDY DESIGN-HESC or FTDC were incubated with 100nM synthetic PIF or vehicle control. Global gene expression was analyzed using microarray and pathway-analysis. Proteins were analyzed using quantitative mass-spectrometry, and PIF binding by ProtoArray. RESULTS-Gene and proteomic analysis demonstrate that PIF affects immune, adhesion and apoptotic pathways. Significant upregulation in HESC (fold-change) include: NF-k-β activation via IRAKBP1 (53); TLR5 (9); FKBP15 protein (2.3); DSCAML1 (16). BCL-2 was downregulated in HESC (21.1) and FTDC (27.1). ProtoArray demonstrates PIF interaction with intracellular targets insulin degrading enzyme and beta-K+ channels.CONCLUSION-PIF displays essential multi-targeted effects, of regulating immunity, promoting embryo-decidual adhesion, and regulating adaptive apoptotic processes.
The current study describes a statistically significant increase in macrophages (CD68-positive cells) in the decidua of preeclamptic patients. To elucidate the regulation of this monocyte infiltration, expression of monocyte chemoattractant protein-1 (MCP-1) was assessed in leukocyte-free first trimester decidual cells. Confluent decidual cells were primed for 7 days in either estradiol or estradiol plus medroxyprogesterone acetate to mimic the decidualizing steroidal milieu of the luteal phase and early pregnancy. The medium was exchanged for a serum-free defined medium containing corresponding steroids +/- tumor necrosis factor (TNF)-alpha or interleukin (IL)-1beta. After 24 hours, enzyme-linked immunosorbent assay measurements indicated that the addition of medroxyprogesterone acetate did not affect MCP-1 output, whereas 10 ng/ml of TNF-alpha or IL-1beta increased output by 83.5-fold +/- 20.6 and 103.1-fold +/- 14.7, respectively (mean +/- SEM, n = 8, P < 0.05). Concentration-response comparisons revealed that even 0.01 ng/ml of TNF-alpha or IL-1beta elevated MCP-1 output by more than 15-fold. Western blotting confirmed the enzyme-linked immunosorbent assay results, and quantitative reverse transcriptase-polymerase chain reaction confirmed corresponding effects on MCP-1 mRNA levels. The current study demonstrates that TNF-alpha and IL-1beta enhance MCP-1 in first trimester decidua. This finding suggests a mechanism by which recruitment of excess macrophages to the decidua impairs endovascular trophoblast invasion, the primary placental defect of preeclampsia.
Preeclampsia, a common pregnancy disorder associated with an increase in systemic inflammation, is the leading cause of maternal and fetal morbidity and mortality throughout the world. It is associated with shallow extravillous trophoblast invasion of the decidua, leading to uteroplacental blood flow that is inadequate for the developing fetal-placental unit. In preeclamptic women, interleukin-6 (IL-6) levels in plasma, but not placenta, are elevated, prompting evaluation of the decidua as a potential source of this excess, circulating IL-6. The current study found significantly higher immunohistochemical staining for IL-6 in decidual cells from preeclamptic versus preterm, gestational age-matched control placentas. Proinflammatory cytokines associated with the genesis of preeclampsia (i.e., tumor necrosis factor-␣ and interleukin-1) enhanced IL-6 mRNA levels and increased secreted IL-6 levels in first trimester leukocytefree decidual cell incubations, as measured by real time quantitative RT-PCR , ELISA , and Western blotting. Therefore , decidual cell-derived IL-6 may contribute to excess circulating IL-6 levels that can promote both endothelial cell dysfunction (and subsequent vascular dysfunction) and the pathogenesis of preeclampsia whereas locally elevated IL-6 levels may contribute to an excess of decidual macrophages implicated in shallow extravillous trophoblast invasion of the decidua. Maternal-fetal interactions create a mild systemic inflammatory state exemplified by activation of both vascular endothelium and leukocytes that is most apparent in the third trimester of uncomplicated human pregnancies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.