The computational burden created by the integration of these complex components often limits the fluidity of real-time interactive simulators. Although haptic interfaces have become increasingly sophisticated, the production of realistic tactile sensory feedback remains a formidable and costly challenge. The rate of future progress may be contingent upon international collaboration between research groups and the establishment of common simulation platforms. Given current limitations, the most potential for growth lies in the innovative design of models that expand the procedural applications of neurosurgery simulation environments.
Decompressive hemicraniectomy prolongs short-term survival in patients with poor-grade aneurysmal subarachnoid hemorrhage with associated intracerebral hemorrhage; however, this trend is not statistically significant, and the overall QoL experienced by survivors is poor. Decompressive hemicraniectomy may be indicated if performed early in a select subset of patients. On the basis of our preliminary data, large prospective studies to investigate this issue further may not be warranted.
Background: The complement cascade plays a deleterious role in multiple models of ischemia/reperfusion (I/R) injury, including stroke. Investigation of the complement cascade may provide a critical approach to identifying neuroprotective strategies that can be effective at clinically relevant time points in cerebral ischemia. This review of the literature describes the deleterious effects of complement activation in systemic I/R models and previous attempts at therapeutic complement inhibition, with a focus on the potential role of complement inhibition in ischemic neuroprotection. Translation of these concepts into ischemic stroke models and exploration of related neuroprotective strategies are also reviewed. Summary of Review: We performed a MEDLINE search to identify any studies published between 1966 and 2001 dealing with complement activation in the setting of I/R injury. We also searched for studies demonstrating up-regulation of any complement components within the central nervous system during inflammation and/or ischemia. Conclusions: The temporal and mechanistic overlap of the complement cascade with other biochemical events occurring in cerebral I/R injury is quite complex and is only beginning to be understood. However, there is compelling evidence that complement is quite active in the setting of acute stroke, suggesting that anticomplement strategies should be further investigated through genetic analysis, nonhuman primate models, and clinical investigations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.