Fragmented populations possess an intriguing duplicity: even if subpopulations are reliably extinction-prone, asynchrony in local extinctions and recolonizations makes global persistence possible. Migration is a double-edged sword in such cases: too little migration prevents recolonization of extinct patches, whereas too much synchronizes subpopulations, raising the likelihood of global extinction. Both edges of this proverbial sword have been explored by manipulating the rate of migration within experimental populations. However, few experiments have examined how the evolutionary ecology of fragmented populations depends on the pattern of migration. Here, we show that the migration pattern affects both coexistence and evolution within a community of bacterial hosts (Escherichia coli) and viral pathogens (T4 coliphage) distributed across a large network of subpopulations. In particular, different patterns of migration select for distinct pathogen strategies, which we term 'rapacious' and 'prudent'. These strategies define a 'tragedy of the commons': rapacious phage displace prudent variants for shared host resources, but prudent phage are more productive when alone. We find that prudent phage dominate when migration is spatially restricted, while rapacious phage evolve under unrestricted migration. Thus, migration pattern alone can determine whether a de novo tragedy of the commons is resolved in favour of restraint.
The reactions of alkyl peroxy radicals (RO(2)) play a central role in the low-temperature oxidation of hydrocarbons. In this work, we present high-pressure rate estimation rules for the dissociation, concerted elimination, and isomerization reactions of RO(2). These rate rules are derived from a systematic investigation of sets of reactions within a given reaction class using electronic structure calculations performed at the CBS-QB3 level of theory. The rate constants for the dissociation reactions are obtained from calculated equilibrium constants and a literature review of experimental rate constants for the reverse association reactions. For the concerted elimination and isomerization channels, rate constants are calculated using canonical transition state theory. To determine if the high-pressure rate expressions from this work can directly be used in ignition models, we use the QRRK/MSC method to calculate apparent pressure and temperature dependent rate constants for representative reactions of small, medium, and large alkyl radicals with O(2). A comparison of concentration versus time profiles obtained using either the pressure dependent rate constants or the corresponding high-pressure values reveals that under most conditions relevant to combustion/ignition problems, the high-pressure rate rules can be used directly to describe the reactions of RO(2).
The structures of NADP+ and magnesium isocitrate bound to the NADP(+)-dependent isocitrate dehydrogenase of Escherichia coli have been determined and refined at 2.5-A resolution. NADP+ is bound by the large domain of isocitrate dehydrogenase, a structure that has little similarity to the supersecondary structure of the nucleotide-binding domain of the lactate dehydrogenase-like family of nucleotide-binding proteins. The coenzyme-binding site confirms the fundamentally different evolution of the isocitrate dehydrogenase-like and the lactate dehydrogenase-like classes of nucleotide-binding proteins. In the magnesium-isocitrate complex, magnesium is coordinated to the alpha-carboxylate and alpha-hydroxyl oxygen of isocitrate in a manner suitable for stabilization of a negative charge on the hydroxyl oxygen during both the dehydrogenation and decarboxylation steps of the conversion of isocitrate to alpha-ketoglutarate. The metal ion is also coordinated by aspartate side chains 283' (of the second subunit of the dimer) and 307 and two water molecules in a roughly octahedral arrangement. On the basis of the geometry of the active site, the base functioning in the dehydrogenation step is most likely aspartate 283'. E. coli isocitrate dehydrogenase transfers a hydride stereospecifically to the A-side of NADP+, and models for a reactive ternary complex consistent with this stereospecificity are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.