Abstract. Most studies on the effects of elevated CO 2 have focused on the effects on plant growth and ecosystem processes. Fewer studies have examined the effects of elevated CO 2 on herbivory, and of these, most have examined feeding rates in laboratory conditions. Our study takes advantage of an open-top CO 2 fertilization study in a Florida scrub-oak community to examine the effects of elevated CO 2 on herbivore densities, herbivore feeding rates, and levels of attack of herbivores by natural enemies.Higher atmospheric CO 2 concentration reduced plant foliar nitrogen concentrations, decreased abundance of leaf-mining insect herbivores, increased per capita leaf consumption by leafminers, and increased leafminer mortality. As suggested by other authors, reduced foliar quality contributed to the increase in herbivore mortality, but only partly. The major factor increasing mortality was higher attack rate by parasitoids. Thus increasing CO 2 concentrations may reduce the survivorship of insect herbivores directly, by reducing plant quality, but also indirectly, by changing herbivore feeding and eliciting greater top-down pressure from natural enemies.
Cellular polarization underlies many facets of cell behavior, including cell growth. The rod-shaped fission yeast Schizosaccharomyces pombe is a well-established, genetically tractable system for studying growth polarity regulation. S. pombe cells elongate at their two cell tips in a cell cycle-controlled manner, transitioning from monopolar to bipolar growth in interphase when new ends established by the most recent cell division begin to extend. We previously identified cytokinesis as a critical regulator of new end growth and demonstrated that Fic1, a cytokinetic factor, is required for normal polarized growth at new ends. Here, we report that Fic1 is phosphorylated on two C-terminal residues, which are each targeted by multiple protein kinases. Endogenously-expressed Fic1 phosphomutants cannot support proper bipolar growth, and the resultant defects facilitate the switch into an invasive pseudohyphal state. Thus, phosphoregulation of Fic1 links the completion of cytokinesis to the re-establishment of polarized growth in the next cell cycle. These findings broaden the scope of signaling events that contribute to regulating S. pombe growth polarity, underscoring that cytokinetic factors constitute relevant targets of kinases affecting new end growth.
Various oil formulations were studied in order to ascertain their suitability for use in automobile engine applications. They are characterised according to viscosity, VI, pourpoint and Noack volatility, and the results presented for elastomer compatibility, oxidation resistance and Cu/Pb bearing corrosion, wear, groove filling and viscosity increase in engine tests. The paper concludes that a blend of PAO and polyolesters is a useful component of a SAE 10W‐30 semi‐synthetic motor oil.
In Schizosaccharomyces pombe, septum formation is coordinated with cytokinetic ring constriction but the mechanisms linking these events are unclear. In this study, we explored the role of the cytokinetic ring component Fic1, first identified by its interaction with the F-BAR protein Cdc15, in septum formation. We found that the fic1 phospho-ablating mutant, fic1-2A, is a gain-of-function allele that suppresses myo2-E1, the temperature-sensitive allele of the essential type-II myosin, myo2. This suppression is achieved by the promotion of septum formation and required Fic1's interaction with the F-BAR proteins Cdc15 and Imp2. Additionally, we found that Fic1 interacts with Cyk3 and that this interaction was likewise required for Fic1's role in septum formation. Fic1, Cdc15, Imp2, and Cyk3 are the orthologs of the Saccharomyces cerevisiae ingression progression complex, which stimulates the chitin synthase Chs2 to promote primary septum formation. However, our findings indicate that Fic1 promotes septum formation and cell abscission independently of the S. pombe Chs2 ortholog. Thus, while similar complexes exist in the two yeasts that each promote septation, they appear to have different downstream effectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.