In order for autonomous vehicles to safely navigate the road ways, accurate object detection must take place before safe path planning can occur. Currently, general purpose object detection convolutional neural network (CNN) models have the highest detection accuracies of any method. However, there is a gap in the proposed detection frameworks. Specifically, those that provide high detection accuracy necessary for deployment but do not perform inference in realtime, and those that perform inference in realtime but detection accuracy is low. We propose multimodel fusion detection system (MFDS), a sensor fusion system that combines the speed of a fast image detection CNN model along with the accuracy of light detection and range (LiDAR) point cloud data through a decision tree approach. The primary objective is to bridge the tradeoff between performance and accuracy. The motivation for MFDS is to reduce the computational complexity associated with using a CNN model to extract features from an image. To improve efficiency, MFDS extracts complimentary features from the LiDAR point cloud in order to obtain comparable detection accuracy. MFDS is novel by not only using the image detections to aid three-dimensional (3D) LiDAR detection but also using the LiDAR data to jointly bolster the image detections and provide 3D detections. MFDS achieves 3.7% higher accuracy than the base CNN detection model and is able to operate at 10 Hz. Additionally, the memory requirement for MFDS is small enough to fit on the Nvidia Tx1 when deployed on an embedded device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.