Background: Resistance of Staphylococcus aureus to commonly used antibiotics is linked to their ability to acquire and disseminate antimicrobial-resistant determinants in nature, and the marine environment may serve as a reservoir for antibiotic-resistant bacteria. This study determined the antibiotic sensitivity profile of S. aureus isolated from selected beach water and intertidal beach sand in the Eastern Cape Province of South Africa. Methods: Two hundred and forty-nine beach sand and water samples were obtained from 10 beaches from April 2015 to April 2016. Staphylococcus aureus was isolated from the samples using standard microbiological methods and subjected to susceptibility testing to 15 antibiotics. Methicillin-resistant Staphylococcus aureus (MRSA) was detected by susceptibility to oxacillin and growth on Brilliance MRSA II agar. Antibiotic resistance genes including mecA, femA rpoB, blaZ, ermB, ermA, ermC, vanA, vanB, tetK and tetM were screened. Results: Thirty isolates (12.3%) were positive for S. aureus by PCR with over 50% showing phenotypic resistance to methicillin. Resistance of S. aureus to antibiotics varied considerably with the highest resistance recorded to ampicillin and penicillin (96.7%), rifampicin and clindamycin (80%), oxacillin (73.3%) and erythromycin (70%). S. aureus revealed varying susceptibility to imipenem (96.7%), levofloxacin (86.7%), chloramphenicol (83.3%), cefoxitin (76.7%), ciprofloxacin (66.7%), gentamycin (63.3%), tetracycline and sulfamethoxazole-trimethoprim (56.7%), and vancomycin and doxycycline (50%). All 30 (100%) S. aureus isolates showed multiple antibiotic-resistant patterns (resistant to three or more antibiotics). The mecA, femA, rpoB, blaZ, ermB and tetM genes were detected in 5 (22.7%), 16 (53.3%), 11 (45.8%), 16 (55.2%), 15 (71.4%), and 8 (72.7%) isolates respectively; Conclusions: Results from this study indicate that beach water and sand from the Eastern Cape Province of South Africa may be potential reservoirs of antibiotic-resistant S. aureus which could be transmitted to exposed humans and animals.
Campylobacter jejuni (CJ) is a zoonotic microbe and a major causative organism of diarrheal infection in humans that often has its functional characteristics inactivated in stressed conditions. The current study assessed the correlation between recovered CJ and water quality parameters and the drug sensitivity patterns of the pathogen to frontline antibiotics in human and veterinary medicine. Water samples (n = 244) from rivers/estuarines were collected from April–September 2016, and physicochemical conditions were recorded on-site. CJ was isolated from the samples using standard microbiological methods and subjected to sensitivity testing to 10 antibiotics. Mean CJ counts were between 1 and 5 logs (CFU/mL). Ninety-five isolates confirmed as CJ by PCR showed varying rates of resistance. Sensitivity testing showed resistance to tetracycline (100%), azithromycin (92%), clindamycin (84.2%), clarithromycin and doxycycline (80%), ciprofloxacin (77.8%), vancomycin (70.5%), erythromycin (70%), metronidazole (36.8%) and nalidixic acid (30.5%). Virulence encoding genes were detected in the majority 80/95, 84.2%) of the confirmed isolates from cdtB; 60/95 (63.2%) from cstII; 49/95 (51.6%) from cadF; 45/95 (47.4%) from clpP; 30/95 (31.6%) from htrB, and 0/95 (0%) from csrA. A multiple resistance cmeABC active efflux pump system was present in 69/95 (72.6) isolates. The presence of CJ was positively correlated with temperature (r = 0.17), pH (r = 0.02), dissolved oxygen (r = 0.31), and turbidity (r = 0.23) but negatively correlated with salinity (r = −0.39) and conductivity (r = −0.28). The detection of multidrug resistant CJ strains from estuarine water and the differential gene expressions they possess indicates a potential hazard to humans. Moreover, the negative correlation between the presence of the pathogen and physicochemical parameters such as salinity indicates possible complementary expression of stress tolerance response mechanisms by wild-type CJ strains.
Marine invertebrates constitute a diverse group of marine organisms beneficial to humanity due to their therapeutic significance. The marine sponge species Psammaplysilla sp. 1 was collected from Philips Reef, South Africa, over a four-season period and assayed for antimicrobial potential. The physicochemical parameters of the collection site were also recorded. The sponge crude extracts’ antimicrobial activity was evaluated using an agar well diffusion assay against 5 pathogens. Phytochemical screening was conducted to identify the presence of 7 critical phytochemical groups. During the four seasons, the mean water temperature was 17.35°C ± 2.06, with autumn recording the highest (20°C) temperature. Antifungal activity was observed by Psammaplysilla sp. 1 (30 mm) against C. albicans, and this was higher than that showed by standard drugs ICZ-10 µg (15 ± 0.1 mm), FLU-15 µg (21 ± 0.2 mm), and VCZ-5 µg (17 ± 0.1 mm), respectively. Similar bioactivities were observed seasonally with Psammaplysilla sp. 1 (22 mm and 24 mm) during autumn and spring, respectively, against C. difficile while only crude extracts collected in spring showed bioactivity against C. albicans. Psammaplysilla sp. crude extracts showed broad-spectrum bioactivity against all test pathogens. DCM : ME crude extracts tested positive for the presence of 2/7 of the phytochemicals (terpenoids and flavonoids). GC-MS revealed several previously reported biologically active compounds such bicyclo[4.2.0]octa-1,3,5-trien-7-ol and phenol, 2,6-dibromo, some of which have been found in plants. This study revealed that sponge bioactivity is dependent on the season and further validated the antimicrobial potential of South African marine sponges.
Marine invertebrates constitute a diverse group of marine organisms beneficial to humankind due to their therapeutic significance. The marine sponge species Psammaplysilla sp. 1 was collected from Philips Reef, South Africa, over a four-season period and assayed for antimicrobial potential. The physicochemical parameters of the collection site were also recorded. The sponge crude extracts' antimicrobial activity was evaluated using an agar well diffusion assay against five pathogens. Phytochemical screening was conducted to identify the presence of 7 critical phytochemical groups. During the four seasons, the temperature was 17.35 oC ± 2.06, with autumn recording the highest (20 oC) temperature. Antifungal activity was observed by Psammaplysilla sp. 1 (30 mm) against C. albicans, and this was higher than that shown by standard drugs ICZ-10µg (15 ± 0.1 mm), FLU-15µg (21 ± 0.2 mm), VCZ-5µg (17 ± 0.1 mm) respectively. Similar bioactivities were observed seasonally with Psammaplysilla sp. 1 (22 mm and 24 mm) during autumn and spring, respectively, against C. difficile, while only crude extracts collected in spring showed bioactivity against C. albicans. Psammaplysilla sp crude extracts showed broad-spectrum bioactivity against all test pathogens. DCM:ME crude extracts tested positive for the presence of 2/7 of the phytochemicals (terpenoids and flavonoids). GC-MS revealed several previously reported biologically active compounds such as Bicyclo[4.2.0]octa-1,3,5-trien-7-ol and Phenol, 2,6-dibromo has been found in plants. This study revealed that sponge bioactivity is dependent on the season and further validated the antimicrobial potential of South African marine sponges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.