Wound healing is a complicated yet necessary event that takes place in both animals and human beings for the body to repair itself due to injury. Wound healing involves various stages that ensure the restoration of the injured tissue at the end of the process. Wound dressing material acts as a protective extracellular barrier against potential damage to the injury and microbial invasion. Naturally, polysaccharides (chitosan and alginate) have inherent properties that have made them attractive for their usage in wound healing therapy. Alginate and chitosan have been used to develop novel wound healing and smart biomaterials due to various functionalities such as reducing swelling, non-toxic nature, biocompatibility, antimicrobial potential, and maintenance moist environment, ability to absorb wound fluid, and skin regeneration promotion. Functionalization of polysaccharides is one of the many approaches that have been used to modify and enhance the wound healing properties of these biomaterials. Many studies have been done to modify the polysaccharide hydrogels. Some of these are highlighted in this paper. The designing and development of smart hydrogels that react to their environment have recently sparked a significant scientific and pharmaceutical interest. Smart hydrogel development has been the primary focal area for developing highly advanced and sophisticated wound healing therapeutic technologies. This paper seeks to comprehensively shed light on the advancements of functionalized chitosan and alginate-based hydrogels and their applicability in wound healing therapeutics. In addition to this, thus identifying critical drawbacks faced in existing hydrogel systems and how prospective technologies enable digitally controlled bio-platforms coupled with biomaterials to improve wound care. This review hopes to stimulate and encourage researchers to identify future avenues worth investigation.
Marine invertebrates constitute a diverse group of marine organisms beneficial to humanity due to their therapeutic significance. The marine sponge species Psammaplysilla sp. 1 was collected from Philips Reef, South Africa, over a four-season period and assayed for antimicrobial potential. The physicochemical parameters of the collection site were also recorded. The sponge crude extracts’ antimicrobial activity was evaluated using an agar well diffusion assay against 5 pathogens. Phytochemical screening was conducted to identify the presence of 7 critical phytochemical groups. During the four seasons, the mean water temperature was 17.35°C ± 2.06, with autumn recording the highest (20°C) temperature. Antifungal activity was observed by Psammaplysilla sp. 1 (30 mm) against C. albicans, and this was higher than that showed by standard drugs ICZ-10 µg (15 ± 0.1 mm), FLU-15 µg (21 ± 0.2 mm), and VCZ-5 µg (17 ± 0.1 mm), respectively. Similar bioactivities were observed seasonally with Psammaplysilla sp. 1 (22 mm and 24 mm) during autumn and spring, respectively, against C. difficile while only crude extracts collected in spring showed bioactivity against C. albicans. Psammaplysilla sp. crude extracts showed broad-spectrum bioactivity against all test pathogens. DCM : ME crude extracts tested positive for the presence of 2/7 of the phytochemicals (terpenoids and flavonoids). GC-MS revealed several previously reported biologically active compounds such bicyclo[4.2.0]octa-1,3,5-trien-7-ol and phenol, 2,6-dibromo, some of which have been found in plants. This study revealed that sponge bioactivity is dependent on the season and further validated the antimicrobial potential of South African marine sponges.
Marine invertebrates constitute a diverse group of marine organisms beneficial to humankind due to their therapeutic significance. The marine sponge species Psammaplysilla sp. 1 was collected from Philips Reef, South Africa, over a four-season period and assayed for antimicrobial potential. The physicochemical parameters of the collection site were also recorded. The sponge crude extracts' antimicrobial activity was evaluated using an agar well diffusion assay against five pathogens. Phytochemical screening was conducted to identify the presence of 7 critical phytochemical groups. During the four seasons, the temperature was 17.35 oC ± 2.06, with autumn recording the highest (20 oC) temperature. Antifungal activity was observed by Psammaplysilla sp. 1 (30 mm) against C. albicans, and this was higher than that shown by standard drugs ICZ-10µg (15 ± 0.1 mm), FLU-15µg (21 ± 0.2 mm), VCZ-5µg (17 ± 0.1 mm) respectively. Similar bioactivities were observed seasonally with Psammaplysilla sp. 1 (22 mm and 24 mm) during autumn and spring, respectively, against C. difficile, while only crude extracts collected in spring showed bioactivity against C. albicans. Psammaplysilla sp crude extracts showed broad-spectrum bioactivity against all test pathogens. DCM:ME crude extracts tested positive for the presence of 2/7 of the phytochemicals (terpenoids and flavonoids). GC-MS revealed several previously reported biologically active compounds such as Bicyclo[4.2.0]octa-1,3,5-trien-7-ol and Phenol, 2,6-dibromo has been found in plants. This study revealed that sponge bioactivity is dependent on the season and further validated the antimicrobial potential of South African marine sponges.
Scientists have continuously searched for novel bioactive compounds to overcome the inherent problems associated with drug resistance, the evolution of unknown diseases, and the toxicity of currently used compounds. The ocean has been considered a rich source of compounds that possess unique chemical structures and novel biological capabilities. Biologically active molecules isolated from marine flora and fauna have shown significant advancement over the past century in the pharmaceutical industry. Marine natural products (MNPs) have been used as nanomedicine, cosmetics, wound healing, antimicrobial agents, anticancer agents, and anti-inflammatory agents. The physicochemical parameters of the collection site were also recorded. This study’s marine sponge species were collected from Phillip’s Reef, South Africa, at 12 m during the spring season. Ethyl acetate (EA) and dichloromethane : methanol (DCM : ME, 1 : 1) were used as extraction solvents. Crude extracts of the marine sponges were tested against MRSA, P. aeruginosa, C. difficile, A. fumigatus, and C. albicans. Phytochemical screening was conducted to identify seven critical phytochemical groups. A pH reading of 8.01 and a temperature of 15.45°C were recorded at the sampling site. Clathria sp. 1 and Tedania (Tedania) stylonychaeta EA crude extracts showed bioactivity against all five test pathogens. The DCM : ME crude extract of Clathria sp. 1 was the only bioactive crude extract from DCM : ME extracts. This crude extract was only bioactive against C. albicans as no activity was observed against the other four pathogens. EA crude extracts of Clathria sp. 1 yielded more significant inhibition zones against both fungal pathogens. These EA crude extracts performed better than fluconazole as inhibition zones of 35 ± 0 mm at 24 mg/ml, 31 ± 0 mm at 19 mg/ml, 31 ± 0 mm at 14.4 mg/ml, 30 ± 0 mm at 9.6 mg/ml, and 25 ± 0 mm at 7.2 mg/ml were recorded. Clathria sp. 1 crude extracts exhibited higher inhibition zones compared to Tedania (Tedania) stylonychaeta. The antibiotic imipenem ( 26 ± 0.7 mm at 10 μg) and ciprofloxacin ( 30 ± 0.3 mm at 5 μg) exhibited higher zones of inhibition than EA crude extracts of Tedania (Tedania) stylonychaeta at all test concentrations. In this study, Clathria sp. 1 was observed to have broad-spectrum bioactivity as EA crude extracts were bioactive against MRSA, P. aeruginosa, C. difficile, A. fumigatus, and C. albicans. In addition to this, the EA crude extract of Clathria sp. 1 was bacteriostatic (9.6 mg/ml). Clathria sp. 1 DCM : ME crude extract only tested positive for the presence of terpenoids. In contrast, EA crude extracts did not test positive for the existence of any of the seven phytochemicals. Our study has revealed that Tedania (Tedania) stylonychaeta and Clathria sp. 1 sponge species collected from Phillip’s Reef in South Africa can produce bioactive compounds useful against bacterial and fungal species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.