Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects.We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives. Geosphere-Biosphere Program (IGBP) and DIVERSITAS, the TRY database (TRY-not an acronym, rather a statement of sentiment; https ://www.try-db.org; Kattge et al., 2011) was proposed with the explicit assignment to improve the availability and accessibility of plant trait data for ecology and earth system sciences. The Max Planck Institute for Biogeochemistry (MPI-BGC) offered to host the database and the different groups joined forces for this community-driven program. Two factors were key to the success of TRY: the support and trust of leaders in the field of functional plant ecology submitting large databases and the long-term funding by the Max Planck Society, the MPI-BGC and the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, which has enabled the continuous development of the TRY database.
Widespread tree mortality associated with drought has been observed on all forested continents and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere–atmosphere interactions of carbon, water and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of droughtinduced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analysed across species and biomes using a standardized physiological framework. Here, we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function
SummaryPlant survival during drought requires adequate hydration in living tissues and carbohydrate reserves for maintenance and recovery. We hypothesized that tree growth and hydraulic strategy determines the intensity and duration of the 'physiological drought', thereby affecting the relative contributions of loss of hydraulic function and carbohydrate depletion during mortality.We compared patterns in growth rate, water relations, gas exchange and carbohydrate dynamics in three tree species subjected to prolonged drought.Two Eucalyptus species (E. globulus, E. smithii) exhibited high growth rates and water-use resulting in rapid declines in water status and hydraulic conductance. In contrast, conservative growth and water relations in Pinus radiata resulted in longer periods of negative carbon balance and significant depletion of stored carbohydrates in all organs. The ongoing demand for carbohydrates from sustained respiration highlighted the role that duration of drought plays in facilitating carbohydrate consumption.Two drought strategies were revealed, differentiated by plant regulation of water status: plants maximized gas exchange, but were exposed to low water potentials and rapid hydraulic dysfunction; and tight regulation of gas exchange at the cost of carbohydrate depletion. These findings provide evidence for a relationship between hydraulic regulation of water status and carbohydrate depletion during terminal drought.
Australian savannas exhibit marked seasonality in precipitation, with more than 90% of the annual total falling between October and May. The dry season is characterized by declining soil water availability and high vapor pressure deficits (up to 2.5 kPa). We used heat pulse technology to measure whole-tree transpiration rates on a daily and seasonal basis for the two dominant eucalypts at a site near Darwin, Australia. Contrary to expectations, transpiration rates were higher during the dry season than during the wet season, largely because of increased evaporative demand and the exploitation of groundwater reserves by the trees. Transpiration rates exhibited a marked hysteresis in relation to vapor pressure deficit, which was more marked in the dry season than in the wet season. This result may be attributable to low soil hydraulic conductivity, or the use of stored stem water, or both. Tree water use was strongly correlated with leaf area and diameter at breast height and there were no differences in transpiration between the species studied. These results are discussed in relation to scaling tree water use to stand water use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.