The present studies report the effects on neonatal rats of oral exposure to genistein during the period from birth to postnatal day (PND) 21 to generate data for use in assessing human risk following oral ingestion of genistein. Failure to demonstrate significant exposure of the newborn pups via the mothers milk led us to subcutaneously inject genistein into the pups over the period PND 1-7, followed by daily gavage dosing to PND 21. The targeted doses throughout were 4 mg/kg/day genistein (equivalent to the average exposure of infants to total isoflavones in soy milk) and a dose 10 times higher than this (40 mg/kg genistein). The dose used during the injection phase of the experiment was based on plasma determinations of genistein and its major metabolites. Diethylstilbestrol (DES) at 10 micro g/kg was used as a positive control agent for assessment of changes in the sexually dimorphic nucleus of the preoptic area (SDN-POA). Administration of 40 mg/kg genistein increased uterus weights at day 22, advanced the mean day of vaginal opening, and induced permanent estrus in the developing female pups. Progesterone concentrations were also decreased in the mature females. There were no effects in females dosed with 4 mg/kg genistein, the predicted exposure level for infants drinking soy-based infant formulas. There were no consistent effects on male offspring at either dose level of genistein. Although genistein is estrogenic at 40 mg/kg/day, as illustrated by the effects described above, this dose does not have the same repercussions as DES in terms of the organizational effects on the SDN-POA.
A major challenge in the emerging field of toxicogenomics is to define the relationships between chemically induced changes in gene expression and alterations in conventional toxicologic parameters such as clinical chemistry and histopathology. We have explored these relationships in detail using the rodent uterotrophic assay as a model system. Gene expression levels, uterine weights, and histologic parameters were analyzed 1, 2, 4, 8, 24, 48, and 72 hr after exposure to the reference physiologic estrogen 17β-estradiol (E 2 ). A multistep analysis method, involving unsupervised hierarchical clustering followed by supervised gene ontology-driven clustering, was used to define the transcriptional program associated with E 2 -induced uterine growth and to identify groups of genes that may drive specific histologic changes in the uterus. This revealed that uterine growth and maturation are preceded and accompanied by a complex, multistage molecular program. The program begins with the induction of genes involved in transcriptional regulation and signal transduction and is followed, sequentially, by the regulation of genes involved in protein biosynthesis, cell proliferation, and epithelial cell differentiation. Furthermore, we have identified genes with common molecular functions that may drive fluid uptake, coordinated cell division, and remodeling of luminal epithelial cells. These data define the mechanism by which an estrogen induces organ growth and tissue maturation, and demonstrate that comparison of temporal changes in gene expression and conventional toxicology end points can facilitate the phenotypic anchoring of toxicogenomic data.
Diethylhexylphthalate (DEHP) is a phthalate plasticizer that belongs to the peroxisome proliferator (PP) class of rodent nongenotoxic hepatocarcinogens. Previously, we have shown that MEHP (a principal metabolite of DEHP and the proximal PP) induced DNA synthesis and suppressed apoptosis in rat but not in human hepatocytes in vitro. Here, we present further studies of species differences in response to DEHP. In rats, 4 days of exposure to DEHP (950 mg/kg per day by gavage) induced peroxisomal beta-oxidation, DNA synthesis and suppressed apoptosis. In contrast, there was no response of guinea pig liver to DEHP. In rat hepatocytes in vitro, MEHP (250, 500 and 750 microM) induced peroxisomal beta-oxidation, DNA synthesis and suppressed apoptosis. In contrast to the pleiotropic response noted in rat hepatocytes, there was no response of human hepatocytes to 250, 500 or 750 microM MEHP. PPs activate the peroxisome proliferator activated receptor alpha (PPARalpha) that binds to DNA at peroxisome proliferator response elements (PPREs) within the promoters of PP-responsive genes such as rat acyl CoA oxidase (ACO). However, the human ACO gene promoter differs at three bases within the PPRE from the rat ACO promoter and appears refractory to PPs. To address species differences in response to DEHP at the molecular level, we used promoter-reporter gene assays to compare the ability of MEHP to induce gene expression from the rat or the human ACO promoter. MEHP gave a concentration-dependent increase in reporter gene expression from the rat ACO gene promoter with either mouse or human PPARalpha. In contrast, the human ACO promoter was unable to drive MEHP-induced gene transcription irrespective of the species origin of PPARalpha. These data provide further weight of evidence at the cellular and molecular levels for a lack of risk to human health from the phthalate DEHP.
We studied nine presumed nongenotoxic rodent carcinogens, as defined by the U.S. National Toxicology Program (NTP), to determine their ability to induce acute or subacute biochemical and tissue changes that may act as useful predictors of nongenotoxic rodent carcinogenesis. The chemicals selected included six liver carcinogens (two of which are peroxisome proliferators), three thyroid gland carcinogens, and four kidney carcinogens. We administered the chemicals (diethylhexyl phthalate, cinnamyl anthranilate, chlorendic acid, 1,4-dichlorobenzene, monuron, ethylene thiourea, diethyl thiourea, trimethyl thiourea, and d-limonene to the same strains of mice and rats used in the original NTP bioassays (nine chemicals to rats and seven to mice). Selected tissues (liver, thyroid gland, and kidney) were collected from groups of animals at 7, 28, and 90 days for evaluation. Tissue changes selected for study were monitored for all of the test groups, irrespective of the specificity of the carcinogenic responses observed in those tissues. This allowed us to assess both the carcinogen specificity and the carcinogen sensitivity of the events being monitored. We studied relative weight, cell labeling indices, and pathologic changes such as hypertrophy in all tissues; a range of cytochrome P450 enzymes and palmitoyl coenzyme A oxidase in the liver; changes in the levels of plasma total triiodothyronine, total thyroxine, and thyroid-stimulating hormone (TSH) as markers of thyroid gland function; and hyaline droplet formation, tubular basophilia, and the formation of granular casts in the kidney. There were no single measurements that alerted specifically to the carcinogenicity of the agents to the rodent liver, thyroid gland, or kidney. However, in the majority of cases, the chemical induction of cancer in a tissue was preceded by a range of biochemical/morphologic changes, most of which were moderately specific for a carcinogenic outcome, and some of which were highly specific for it (e.g., increases in TSH in the thyroid gland and increases in relative liver weight in the mouse). The only measurements that failed to correlate usefully with carcinogenicity were the induction of liver enzymes (with the exception of the enzymes associated with peroxisome proliferation). Most of the useful markers were evident at the early times studied (7 days and 28 days), but no overall best time for the measurement of all markers was identified. The judicious choice of markers and evaluation times can aid the detection of potential nongenotoxic rodent carcinogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.