International audienceUsing 15 LES cycles of a high load / low speed spark ignition engine operating point, two different fresh gases autoignition regimes called knock and super-knock are analyzed. A direct " a posteriori " analysis of pressure waves and autoignition heat release observed in LES is proposed. It reveals that low to moderate knock intensity, corresponding to late spark timings (ST) is characterized by one or several random autoignition (AI) spots which consume the surrounding fresh gases without coupling with the AI heat release. On the contrary , the highest knock intensities correspond to what is usually called super-knock, a very intense knock observed under pre-ignition conditions or for very early ST, as done in this study. LES shows that the pressure waves generated by one or a couple of AI spots are strong enough to induce locally a strong fresh gases temperature increase leading itself to a substantial decrease of the AI delay. This allows to generate a coupling between the pressure wave and the AI reaction rate which reinforce each other, leading to maximum pressures and propagation speeds close to those of a detonation. These results therefore strongly support the hypothesis proposed in the literature that super-knock is characterized by a deflagration to detonation transition (DDT). An " a priori " analysis is also performed thanks to the use of a local detonation indicator based on Bradley's DDT diagram. It is shown that this tool not only predict
Downsized spark ignition engines running under high loads have become more and more attractive for car manufacturers because of their increased thermal efficiency and lower CO2 emissions. However, the occurrence of abnormal combustions promoted by the thermodynamic conditions encountered in such engines limits their practical operating range, especially in high efficiency and low fuel consumption regions. One of the main abnormal combustion is knock, which corresponds to an auto-ignition of end gases during the flame propagation initiated by the spark plug. Knock generates pressure waves which can have long-term damages on the engine, that is why the aim for car manufacturers is to better understand and predict knock appearance. However, an experimental study of such recurrent but non-cyclic phenomena is very complex, and these difficulties motivate the use of computational fluid dynamics for better understanding them. In the present article, large-eddy simulation (LES) is used as it is able to represent the instantaneous engine behavior and thus to quantitatively capture cyclic variability and knock. The proposed study focuses on the large-eddy simulation analysis of knock for a direct injection spark ignition engine. A spark timing sweep available in the experimental database is simulated, and 15 LES cycles were performed for each spark timing. Wall temperatures, which are a first-order parameter for knock prediction, are obtained using a conjugate heat transfer study. Present work points out that LES is able to describe the in-cylinder pressure envelope whatever the spark timing, even if the sample of LES cycles is limited compared to the 500 cycles recorded in the engine test bench. The influence of direct injection and equivalence ratio stratifications on combustion is also (MAPO) analyzed. Finally, focusing on knock, a Maximum Amplitude Pressure Oscillation analysis (MAPO) is conducted for both experimental and numerical pressure traces pointing out that LES well reproduces experimental knock tendencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.