Downsized spark ignition engines running under high loads have become more and more attractive for car manufacturers because of their increased thermal efficiency and lower CO2 emissions. However, the occurrence of abnormal combustions promoted by the thermodynamic conditions encountered in such engines limits their practical operating range, especially in high efficiency and low fuel consumption regions. One of the main abnormal combustion is knock, which corresponds to an auto-ignition of end gases during the flame propagation initiated by the spark plug. Knock generates pressure waves which can have long-term damages on the engine, that is why the aim for car manufacturers is to better understand and predict knock appearance. However, an experimental study of such recurrent but non-cyclic phenomena is very complex, and these difficulties motivate the use of computational fluid dynamics for better understanding them. In the present article, large-eddy simulation (LES) is used as it is able to represent the instantaneous engine behavior and thus to quantitatively capture cyclic variability and knock. The proposed study focuses on the large-eddy simulation analysis of knock for a direct injection spark ignition engine. A spark timing sweep available in the experimental database is simulated, and 15 LES cycles were performed for each spark timing. Wall temperatures, which are a first-order parameter for knock prediction, are obtained using a conjugate heat transfer study. Present work points out that LES is able to describe the in-cylinder pressure envelope whatever the spark timing, even if the sample of LES cycles is limited compared to the 500 cycles recorded in the engine test bench. The influence of direct injection and equivalence ratio stratifications on combustion is also (MAPO) analyzed. Finally, focusing on knock, a Maximum Amplitude Pressure Oscillation analysis (MAPO) is conducted for both experimental and numerical pressure traces pointing out that LES well reproduces experimental knock tendencies.
Performance of lean-burn gasoline spark-ignition engines can be enhanced through hydrogen supplementation. Thanks to its physicochemical properties, hydrogen supports the flame propagation and extends the dilution limits with improved combustion stability. These interesting features usually result in decreased emissions and improved efficiencies. This article aims at demonstrating how hydrogen can support the combustion process with a modern combustion system optimized for high dilution resistance and efficiency. To achieve this, chemical kinetics calculations are first performed in order to quantify the impacts of hydrogen addition on the laminar flame speed and on the auto-ignition delay times of air/gasoline mixtures. These data are then implemented in the extended coherent flame model and tabulated kinetics of ignition combustion models in a specifically updated version of the CONVERGE code. Three-dimensional computational fluid dynamics engine calculations are performed at λ = 2 with 3% v/v of hydrogen for two operating points. At low load, numerical investigations show that hydrogen enhances the maximal combustion speed and the flame growth just after the spark which is a critical aspect of combustion with diluted mixtures. The flame front propagation is also more isotropic when supported with hydrogen. At mid load, hydrogen improves the combustion speed and also extends the auto-ignition delay times resulting in a better knocking resistance. A maximal indicated efficiency of 48.5% can thus be reached at λ = 2 thanks to an optimal combustion timing.
Downsized spark ignition engines coupled with a direct injection strategy are more and more attractive for car manufacturers in order to reduce pollutant emissions and increase efficiency. However, the combustion process may be affected by local heterogeneities caused by the interaction between the spray and turbulence. The aim for car manufacturers of such engine strategy is to create, for mid-to-high speeds and mid-up-high loads, a mixture which is as homogeneous as possible. However, although injection occurs during the intake phase, which favors homogeneous mixing, local heterogeneities of the equivalence ratio are still observed at the ignition time. The analysis of the mixture preparation is difficult to perform experimentally because of limited optical accesses. In this context, numerical simulation, and in particular Large Eddy Simulation (LES) are complementary tools for the understanding and analysis of unsteady phenomena. The paper presents the LES study of the impact of direct injection on the mixture preparation and combustion in a spark ignition engine. Numerical simulations are validated by comparing LES results with experimental data previously obtained at IFPEN. Two main analyses are performed. The first one focuses on the fuel mixing and the second one concerns the effect of the liquid phase on the combustion process. To highlight these phenomena, simulations with and without liquid injection are performed and compared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.