Soil salinization affects 1-10 billion ha worldwide, threatening the agricultural production needed to feed the ever increasing world population. Phytoremediation may be a cost-effective option for the remediation of these soils. This review analyzes the viability of using phytoremediation for salt-affected soils and explores the remedial mechanisms involved. In addition, it specifically addresses the debate over plant indirect (via soil cation exchange enhancement) or direct (via uptake) role in salt remediation. Analysis of experimental data for electrical conductivity (ECe) + sodium adsorption ratio (SAR) reduction and plant salt uptake showed a similar removal efficiency between salt phytoremediation and other treatment options, with the added potential for phytoextraction under non-leaching conditions. A focus is also given on recent studies that indicate potential pathways for increased salt phytoextraction, co-treatment with other contaminants, and phytoremediation applicability for salt flow control. Finally, this work also details the predicted effects of climate change on soil salinization and on treatment options. The synergetic effects of extreme climate events and salinization are a challenging obstacle for future phytoremediation applications, which will require additional and multi-disciplinary research efforts.
Pseudomonas putida strain AJ and Ochrobactrum strain TD were isolated from hazardous waste sites based on their ability to use vinyl chloride (VC) as the sole source of carbon and energy under aerobic conditions. Strains AJ and TD also use ethene and ethylene oxide as growth substrates. Strain AJ contained a linear megaplasmid (approximately 260 kb) when grown on VC or ethene, but it contained no circular plasmids. While strain AJ was growing on ethylene oxide, it was observed to contain a 100-kb linear plasmid, and its ability to use VC as a substrate was retained. The linear plasmids in strain AJ were cured, and the ability of strain AJ to consume VC, ethene, and ethylene oxide was lost following growth on a rich substrate (LuriaBertani broth) through at least three transfers. Strain TD contained three linear plasmids, ranging in size from approximately 90 kb to 320 kb, when growing on VC or ethene. As with strain AJ, the linear plasmids in strain TD were cured following growth on Luria-Bertani broth and its ability to consume VC and ethene was lost. Further analysis of these linear plasmids may help reveal the pathway for VC biodegradation in strains AJ and TD and explain why this process occurs at many but not all sites where groundwater is contaminated with chloroethenes. Metabolism of VC and ethene by strains AJ and TD is initiated by an alkene monooxygenase. Their yields during growth on VC (0.15 to 0.20 mg of total suspended solids per mg of VC) are similar to the yields reported for other isolates (i.e., Mycobacterium sp., Nocardioides sp., and Pseudomonas sp.).Millions of tons of vinyl chloride (VC) are produced each year, primarily for the manufacture of polyvinyl chloride (25). However, the occurrence of VC in groundwater is typically not a consequence of direct releases to the environment. VC contamination of groundwater results mainly from the transformation of other chlorinated aliphatic compounds, including the reductive dechlorination of polychlorinated ethenes and the dehydrohalogenation of 1,2-dichloroethane (41). It has recently been demonstrated that VC is also formed naturally in soils, presumptively during oxidative reactions involving humic substances, chloride ions, and an oxidant (23). This process may have started as long as 400 million years ago (23), so it seems reasonable to expect that biodegradation processes also developed long ago.Reduction of VC to ethene is typically the rate-limiting step in the overall reduction of chlorinated ethenes, which can lead to the accumulation of VC in groundwater (13, 31). The comparatively low rate of VC reduction may be related to this reaction being cometabolic in some strains of Dehalococcoides, although other strains have recently been shown to be capable of respiring with VC (9, 19). Oxidative acetogenesis of VC has also been documented for anaerobic sediments (2), although the extent of this process at most locations is not yet known.In locations where anaerobic groundwater transitions to aerobic conditions, VC that migrates from the anaero...
The involvement of coenzyme M in aerobic biodegradation of vinyl chloride and ethene in Pseudomonas putida strain AJ and Ochrobactrum sp. strain TD was demonstrated using PCR, hybridization, and enzyme assays. The results of this study extend the range of eubacteria known to use epoxyalkane:coenzyme M transferase.
Intrinsic biodegradation of trichloroethene and 1,1,1-trichloroethane in groundwater at a Superfund site in California has been observed. An anaerobic zone exists in the area closest to the source location, yielding the expected complement of reductive dechlorination daughter products, including cis-1,2-dichloroethene (cis-DCE) and vinyl chloride (VC). Significant levels of methane and ethene were also generated in the anaerobic zone. The groundwater returns to aerobic conditions downgradient of the source, with methane, ethene, VC, and several other compounds still present. Attenuation of VC in the aerobic zone suggests that it is being biodegraded. In this study microcosms were used to evaluate the role of methane and ethene as primary substrates for aerobic biodegradation of VC. Biodegradation of VC was fastest in the bottles containing ethene, with 40 mumol of VC consumed over a 150 day period, compared to approximately 15-20 mumol with methane or a mixture of methane and ethene. VC did not noticeably inhibit ethene biodegradation but did slow the rate of methane use. Methane inhibited ethene metabolism, which apparently caused a reduction in VC biodegradation when methane was present with ethene. These results suggest that ethene plays an important role during in situ natural attenuation of VC under aerobic conditions. Microcosms were also set up with VC alone. Following a 75 day lag period. VC consumption began and subsequent additions were consumed without a lag, suggesting the presence of organisms capable of using VC as a growth substrate. After providing VC alone for nearly 400 days, aliquots of the enrichment culture were used to evaluate its ability to biodegrade cis- and trans-DCE. Both compounds were readily consumed, although addition of VC as the primary substrate was needed to sustain biodegradation of repeated additions. This result suggests that organisms capable of using VC as a sole substrate may play an active role in aerobic natural attenuation of DCEs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.