Meiotic recombination occurs preferentially between homologous nonsister chromatids rather than between sisters, opposite to the bias of mitotic recombinational repair. We have examined formation of joint molecule recombination intermediates (JMs) between homologs and between sisters in yeast strains lacking the meiotic chromosomal protein Red1, the meiotic recA homolog Dmc1, and/or mitotic recA homolog(s), Rad51, Rad55, and Rad57. Mutant phenotypes imply that most meiotic recombination occurs via an interhomolog-only pathway along which interhomolog bias is established early, prior to or during double strand break (DSB) formation, and then enforced, just at the time when DSBs initiate JM formation. A parallel, less differentiated pathway yields intersister and, probably, a few interhomolog events. Coordinate action of mitotic recA homologs as one functional unit, two functions of RED1, and an interhomolog interaction function of DMC1 are also revealed.
During meiosis, branched DNA molecules containing information from both parental chromosomes occur in vivo at loci where meiosis-specific double-stranded breaks occur. We demonstrate here that these joint molecules are recombination intermediates: they contain single strands that have undergone exchange of information. Moreover, these joint molecules are resolved into both parental and recombinant duplexes when treated in vitro with Holliday junction-resolving endonucleases RuvC or T4 endo VII. Taken together with previous observations, these results strongly suggest that joint molecules are double Holliday junctions.
Helicases unwind duplex DNA ahead of the polymerases at the replication fork. However, the identity of the eukaryotic replicative helicase has been controversial; in vivo studies implicate the ring-shaped heterohexameric Mcm2-7 complex, although only a specific subset of Mcm subunits (Mcm467) unwind DNA in vitro. To address this discrepancy, we have compared both Mcm assemblies and find that they differ in their linear single-stranded DNA association rate and their ability to bind circular single-stranded DNA. These differences depend upon the Mcm2/5 interface, which we hypothesize serves as an ATP-dependent "gate" within Mcm2-7. Importantly, we find that reaction conditions that putatively close the Mcm2-7 "gate" reconstitute Mcm2-7 helicase activity. Unlike Mcm467, Mcm2-7 helicase activity is strongly anion dependent. Our results show that purified Mcm2-7 acts as a helicase, provides functional evidence of a Mcm2/5 gate, and lays the foundation for future mechanistic studies of this critical factor.
SUMMARY
The Mcm2-7 complex serves as the eukaryotic replicative helicase, the molecular motor that both unwinds duplex DNA and powers fork progression during DNA replication. Consistent with its central role in this process, much prior work has illustrated that Mcm2-7 loading and activation are landmark events in the regulation of DNA replication. Unlike any other hexameric helicase, Mcm2-7 is composed of six unique and essential subunits. Although the unusual oligomeric nature of this complex has long hampered biochemical investigations, recent advances with both the eukaryotic as well as the simpler archaeal Mcm complexes provide mechanistic insight into their function. In contrast to better-studied homohexameric helicases, evidence suggests that the six Mcm2-7 complex ATPase active sites are functionally distinct and are likely specialized to accommodate the regulatory constraints of the eukaryotic process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.