Summary The lateral habenula (LHb) has recently been identified as a key regulator of the reward system by driving inhibition onto dopaminergic neurons. However, the nature and potential modulation of the major input to the LHb originating from the basal ganglia are poorly understood. Although the output of the basal ganglia is thought to be primarily inhibitory, here we show that transmission from the basal ganglia to the LHb is excitatory, glutamatergic and suppressed by serotonin. Behaviorally, activation of this pathway is aversive, consistent with its role as an ‘anti-reward’ signal. Our demonstration of an excitatory projection from the basal ganglia to the LHb explains how LHb-projecting basal ganglia neurons can have similar encoding properties as LHb neurons themselves. Our results also provide a link between ‘anti-reward’ excitatory synapses and serotonin, a neuromodulator implicated in depression.
A known limitation of iodine radionuclides for labeling and biological tracking of receptor targeted proteins is the tendency of iodotyrosine to rapidly diffuse from cells following endocytosis and lysosomal degradation. In contrast, radiometal-chelate complexes such as indium-111-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (In-111-DOTA) accumulate within target cells due to the residualizing properties of the polar, charged metal-chelate-amino acid adduct. Iodine radionuclides boast a diversity of nuclear properties and chemical means for incorporation, prompting efforts to covalently link radioiodine with residualizing molecules. Herein, we describe the Ugi-assisted synthesis of [I-125]HIP-DOTA, a 4-hydroxy-3-iodophenyl (HIP) derivative of DOTA, and demonstration of its residualizing properties in a murine xenograft model. Overall, this study displays the power of multicomponent synthesis to yield a versatile radioactive probe for antibodies across multiple therapeutic areas with potential applications in both preclinical biodistribution studies and clinical radioimmunotherapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.