Abstract. We present PUFKY: a practical and modular design for a cryptographic key generator based on a Physically Unclonable Function (PUF). A fully functional reference implementation is developed and successfully evaluated on a substantial set of FPGA devices. It uses a highly optimized ring oscillator PUF (ROPUF) design, producing responses with up to 99% entropy. A very high key reliability is guaranteed by a syndrome construction secure sketch using an efficient and extremely low-overhead BCH decoder. This first complete implementation of a PUF-based key generator, including a PUF, a BCH decoder and a cryptographic entropy accumulator, utilizes merely 17% (1162 slices) of the available resources on a low-end FPGA, of which 82% are occupied by the ROPUF and only 18% by the key generation logic. PUFKY is able to produce a cryptographically secure 128-bit key with a failure rate < 10 −9 in 5.62 ms. The design's modularity allows for rapid and scalable adaptations for other PUF implementations or for alternative key requirements. The presented PUFKY core is immediately deployable in an embedded system, e.g. by connecting it to an embedded microcontroller through a convenient bus interface.
Abstract. RFID-based tokens are increasingly used in electronic payment and ticketing systems for mutual authentication of tickets and terminals. These systems typically use cost-effective tokens without expensive hardware protection mechanisms and are exposed to hardware attacks that copy and maliciously modify tokens. Physically Unclonable Functions (PUFs) are a promising technology to protect against such attacks by binding security critical data to the physical characteristics of the underlying hardware. However, existing PUF-based authentication schemes for RFID do not support mutual authentication, are often vulnerable to emulation and denial-of service attacks, and allow only for a limited number of authentications. In this paper, we present a new PUF-based authentication scheme that overcomes these drawbacks: it supports PUF-based mutual authentication between tokens and readers, is resistant to emulation attacks, and supports an unlimited number of authentications without requiring the reader to store a large number of PUF challenge/response pairs. In this context, we introduce reverse fuzzy extractors, a new approach to correct noise in PUF responses that allows for extremely lightweight implementations on the token. Our proof-of-concept implementation shows that our scheme is suitable for resource-constrained devices.
Abstract. We propose Chaskey: a very efficient Message Authentication Code (MAC) algorithm for 32-bit microcontrollers. It is intended for applications that require 128-bit security, yet cannot implement standard MAC algorithms because of stringent requirements on speed, energy consumption, or code size. Chaskey is a permutation-based MAC algorithm that uses the Addition-Rotation-XOR (ARX) design methodology. We prove that Chaskey is secure in the standard model, based on the security of an underlying Even-Mansour block cipher. Chaskey is designed to perform well on a wide range of 32-bit microcontrollers. Our benchmarks show that on the ARM Cortex-M3/M4, our Chaskey implementation reaches a speed of 7.0 cycles/byte, compared to 89.4 cycles/byte for AES-128-CMAC. For the ARM Cortex-M0, our benchmark results give 16.9 cycles/byte and 136.5 cycles/byte for Chaskey and AES-128-CMAC respectively.
Abstract. Security in vehicular networks established itself as a highly active research area in the last few years. However, there are only a few results so far on assuring security for communication buses inside vehicles. Here we advocate the use of a protocol based entirely on simple symmetric primitives that takes advantage of two interesting procedures which we call key splitting and MAC mixing. Rather than achieving authentication independently for each node, we split authentication keys between groups of multiple nodes. This leads to a more efficient progressive authentication that is effective especially in the case when compromised nodes form only a minority and we believe such an assumption to be realistic in automotive networks. To gain more security we also account an interesting construction in which message authentication codes are amalgamated using systems of linear equations. We study several protocol variants which are extremely flexible allowing different trade-offs on bus load, computational cost and security level. Experimental results are presented on state-of-the-art Infineon TriCore controllers which are contrasted with low end controllers with Freescale S12X cores, all these devices are wide spread in the automotive industry. Finally, we discuss a completely backward compatible solution based on CAN+, a recent improvement of CAN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.