Abstract. We propose Chaskey: a very efficient Message Authentication Code (MAC) algorithm for 32-bit microcontrollers. It is intended for applications that require 128-bit security, yet cannot implement standard MAC algorithms because of stringent requirements on speed, energy consumption, or code size. Chaskey is a permutation-based MAC algorithm that uses the Addition-Rotation-XOR (ARX) design methodology. We prove that Chaskey is secure in the standard model, based on the security of an underlying Even-Mansour block cipher. Chaskey is designed to perform well on a wide range of 32-bit microcontrollers. Our benchmarks show that on the ARM Cortex-M3/M4, our Chaskey implementation reaches a speed of 7.0 cycles/byte, compared to 89.4 cycles/byte for AES-128-CMAC. For the ARM Cortex-M0, our benchmark results give 16.9 cycles/byte and 136.5 cycles/byte for Chaskey and AES-128-CMAC respectively.
Sponge functions were originally proposed for hashing, but find increasingly more applications in keyed constructions, such as encryption and authentication. Depending on how the key is used we see two main types of keyed sponges in practice: inner -and outer -keyed. Earlier security bounds, mostly due to the well-known sponge indifferentiability result, guarantee a security level of c/2 bits with c the capacity. We reconsider these two keyed sponge versions and derive improved bounds in the classical indistinguishability setting as well as in an extended setting where the adversary targets multiple instances at the same time. For cryptographically significant parameter values, the expected workload for an attacker to be successful in an n-target attack against the outer-keyed sponge is the minimum over 2 k /n and 2 c /µ with k the key length and µ the total maximum multiplicity. For the inner-keyed sponge this simplifies to 2 k /µ with maximum security if k = c. The multiplicity is a characteristic of the data available to the attacker. It is at most twice the data complexity, but will be much smaller in practically relevant attack scenarios. We take a modular proof approach, and our indistinguishability bounds are the sum of a bound in the PRP model and a bound on the PRP-security of Even-Mansour type block ciphers in the ideal permutation model, where we obtain the latter result by using Patarin's H-coefficient technique.
Abstract.Online ciphers encrypt an arbitrary number of plaintext blocks and output ciphertext blocks which only depend on the preceding plaintext blocks. All online ciphers proposed so far are essentially serial, which significantly limits their performance on parallel architectures such as modern general-purpose CPUs or dedicated hardware. We propose the first parallelizable online cipher, COPE. It performs two calls to the underlying block cipher per plaintext block and is fully parallelizable in both encryption and decryption. COPE is proven secure against chosenplaintext attacks assuming the underlying block cipher is a strong PRP. We then extend COPE to create COPA, the first parallelizable, online authenticated cipher with nonce-misuse resistance. COPA only requires two extra block cipher calls to provide integrity. The privacy and integrity of the scheme is proven secure assuming the underlying block cipher is a strong PRP. Our implementation with Intel AES-NI on a Sandy Bridge CPU architecture shows that both COPE and COPA are about 5 times faster than their closest competition: TC1, TC3, and McOE-G. This high factor of advantage emphasizes the paramount role of parallelizability on up-to-date computing platforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.