Compelling evidence indicates that exposure to air pollution particulate matter (PM) affects human health. However, how PM composition interacts with PM-size to cause adverse health effects needs elucidation. In this study, we were also interested in the physicochemical characteristics and toxicological end points of PM₂.₅₋₀.₃ samples produced in rural, urban, or industrial surroundings, thereby expecting to differentiate their respective in vitro adverse health effects in human bronchial epithelial cells (BEAS-2B). Physicochemical characteristics of the three PM₂.₅₋₀.₃ samples, notably their inorganic and organic components, were closely related to their respective emission sources. Referring also to the dose/response relationships of the three PM₂.₅₋₀.₃ samples, the most toxicologically relevant exposure times (i.e., 24, 48, and 72 h) and doses (i.e., 3.75 μg PM/cm² and 15 μg PM/cm²) to use to study the underlying mechanisms of action involved in PM-induced lung toxicity were chosen. Organic chemicals adsorbed on the three PM₂.₅₋₀.₃ samples (i.e., polycyclic aromatic hydrocarbons) were able to induce the gene expression of xenobiotic-metabolizing enzymes (i.e., Cytochrome P4501A1 and 1B1, and, to a lesser extent, NADPH-quinone oxidoreductase-1). Moreover, intracellular reactive oxygen species within BEAS-2B cells exposed to the three PM₂.₅₋₀.₃ samples induced oxidative damage (i.e., 8-hydroxy-2'-deoxyguanosine formation, malondialdehyde production and/or glutathione status alteration). There were also statistically significant increases of the gene expression and/or protein secretion of inflammatory mediators (i.e., notably IL-6 and IL-8) in BEAS-2B cells after their exposure to the three PM₂.₅₋₀.₃ samples. Taken together, the present findings indicated that oxidative damage and inflammatory response preceeded cytotoxicity in air pollution PM₂.₅₋₀.₃-exposed BEAS-2B cells and supported the idea that PM-size, composition, and origin could interact in a complex manner to determine the in vitro responsiveness to PM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.