VAP proteins (human VAPB/ALS8, Drosophila VAP33, and C. elegans VPR-1) are homologous proteins with an amino-terminal major sperm protein (MSP) domain and a transmembrane domain. The MSP domain is named for its similarity to the C. elegans MSP protein, a sperm-derived hormone that binds to the Eph receptor and induces oocyte maturation. A point mutation (P56S) in the MSP domain of human VAPB is associated with Amyotrophic lateral sclerosis (ALS), but the mechanisms underlying the pathogenesis are poorly understood. Here we show that the MSP domains of VAP proteins are cleaved and secreted ligands for Eph receptors. The P58S mutation in VAP33 leads to a failure to secrete the MSP domain as well as ubiquitination, accumulation of inclusions in the endoplasmic reticulum, and an unfolded protein response. We propose that VAP MSP domains are secreted and act as diffusible hormones for Eph receptors. This work provides insight into mechanisms that may impact the pathogenesis of ALS.
There is an urgent need to identify effective therapies for COVID-19 given that a broadly available and effective vaccine is likely at least one year away. Here, we identify compounds that transcriptionally inhibit host proteins required for SARS-CoV-2 entry and should be evaluated for efficacy in SARS-CoV-2 viral infection assays. Recognizing the need for immediately available treatment options, we focused particular attention on FDA-approved drugs that could be immediately repurposed to treat COVID-19 patients. By mining publicly available gene expression data, we identify several compounds that down-regulate TMPRSS2, a protein required for SARS-CoV-2 entry that has emerged as a promising therapeutic target. Among these, we find twenty independent studies that implicate estrogen-related and androgen-related compounds as transcriptional modulators of TMPRSS2 expression, suggesting that these drugs and others acting on the pathway may be promising therapeutic candidates for COVID-19 for further testing. It is also noteworthy that TMPRSS2 has highly variable and skewed expression in humans, spanning two orders of magnitude with a small minority of individuals having extremely high expression. Combined with literature showing that TMPRSS2 loss-of-function in mouse is protective against SARS while anti-estrogen treatment predicted to increase TMPRSS2 expression exacerbates SARS, this observation raises the hypothesis that TMPRSS2 expression may positively correlate with severity in COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.