Results taken from 270 publications on rates are summarized, and collated with those from 149 publications reriewed previously (Young, 1969(Young, ,1974. The data are classified by major climatic zone, normal or steep relief, and consolid ited or unconsolidated rocks. Representative rates and their ranges are given for soil creep, solifluction, surface wash, solution (chemical denudation), rock weathering, slope retreat, cliff (free face) retreat, marine cliff retreat, and denudation, the last being compared with representative rates of uplift. Solifluction is of the order of 10 times faster than soil creep, but both cause only very slow ground loss. Solution is an important cause of ground loss for siliceous rocks, on which it may be half as rapid as on limestones. Total denudation, brought about mainly by surface wash, reaches a maximum in the semi-arid and probably also the tropical savanna zones. Acceleration of natural erosion rates by human activities ranges from 2-3 times with moderately intense land use to about 10 times with intensive land use (and considerably higher still where there is recognized accelerated soil erosion). Where there is active uplift, typical rates are of the order of 10 times faster than denudation, although in some high, steep mountain ranges these may approach equality.
Abstract. The most sensitive direct method to establish the absolute neutrino mass is observation of the endpoint of the tritium beta-decay spectrum. Cyclotron Radiation Emission Spectroscopy (CRES) is a precision spectrographic technique that can probe much of the unexplored neutrino mass range with O(eV) resolution. A lower bound of m(ν e ) 9(0.1) meV is set by observations of neutrino oscillations, while the KATRIN Experiment -the current-generation tritium beta-decay experiment that is based on Magnetic Adiabatic Collimation with an Electrostatic (MAC-E) filter -will achieve a arXiv:1703.02037v1 [physics.ins-det]
Diagnostic study, Level III (Study of nonconsecutive patients; without consistently applied reference "gold" standard). See the Guidelines for Authors for a complete description of levels of evidence.
Cardiovascular disease is the leading cause of mortality in the world. While reperfusion therapy is vital for patient survival post-heart attack, it also causes further tissue injury, known as myocardial ischemia/reperfusion (I/R) injury in clinical practice. Exploring ways to attenuate I/R injury is of clinical interest for improving post-ischemic recovery. A platelet-inspired nano-cell (PINC) that incorporates both prostaglandin E2 (PGE 2 )-modified platelet membrane and cardiac stromal cellsecreted factors to target the heart after I/R injury is introduced. By taking advantage of the natural infarct-homing ability of platelet membrane and the overexpression of PGE 2 receptors (EPs) in the pathological cardiac microenvironment after I/R injury, the PINCs can achieve targeted delivery of therapeutic payload to the injured heart. Furthermore, a synergistic treatment efficacy can be This article is protected by copyright. All rights reserved. 3 achieved by PINC, which combines the paracrine mechanism of stem cell therapy with the PGE 2 /EP receptor signaling that is involved in the repair and regeneration of multiple tissues. In a mouse model of myocardial I/R injury, intravenous injection of PINCs results in augmented cardiac function and mitigated heart remodeling, which is accompanied by the increase in cycling cardiomyocytes, activation of endogenous stem/progenitor cells, and promotion of angiogenesis. This approach represents a promising therapeutic delivery platform for treating I/R injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.