The field of organic electronics has been developed vastly in the past two decades due to its promise for low cost, lightweight, mechanical flexibility, versatility of chemical design and synthesis, and ease of processing. The performance and lifetime of these devices, such as organic light‐emitting diodes (OLEDs), photovoltaics (OPVs), and field‐effect transistors (OFETs), are critically dependent on the properties of both active materials and their interfaces. Interfacial properties can be controlled ranging from simple wettability or adhesion between different materials to direct modifications of the electronic structure of the materials. In this Feature Article, the strategies of utilizing surfactant‐modified cathodes, hole‐transporting buffer layers, and self‐assembled monolayer (SAM)‐modified anodes are highlighted. In addition to enabling the production of high‐efficiency OLEDs, control of interfaces in both conventional and inverted polymer solar cells is shown to enhance their efficiency and stability; and the tailoring of source–drain electrode–semiconductor interfaces, dielectric–semiconductor interfaces, and ultrathin dielectrics is shown to allow for high‐performance OFETs.
Polymer optical waveguide devices will play a key role in several rapidly developing areas of broadband communications, such as optical networking, metropolitan/access communications, and computing systems due to their easier processibility and integration over inorganic counterparts. The combined advantages also makes them an ideal integration platform where foreign material systems such as YIG (yttrium iron garnet) and lithium niobate, and semiconductor devices such as lasers, detectors, amplifiers, and logic circuits can be inserted into an etched groove in a planar lightwave circuit to enable full amplifier modules or optical add/drop multiplexers on a single substrate. Moreover, the combination of flexibility and toughness in optical polymers makes it suitable for vertical integration to realize 3D and even all‐polymer integrated optics. In this review, a survey of suitable optical polymer systems, their processing techniques, and the integrated optical waveguide components and circuits derived from these materials is summarized. The first part is focused on discussing the characteristics of several important classes of optical polymers, such as their refractive index, optical loss, processibility/mechanical properties, and environmental performance. Then, the emphasis is placed on the discussion of several novel passive and active (electro‐optic and thermo‐optic) polymer systems and versatile processing techniques commonly used for fabricating component devices, such as photoresist‐based patterning, direct lithographic patterning, and soft lithography. At the end, a series of compelling polymer optical waveguide devices including optical interconnects, directional couplers, array waveguide grating (AWG) multi/demultiplexers, switches, tunable filters, variable optical attenuators (VOAs), and amplifiers are reviewed. Several integrated planar lightwave circuits, such as tunable optical add/drop multiplexers (OADMs), photonic crystal superprism waveguides, digital optical switches (DOSs) integrated with VOAs, traveling‐wave heterojunction phototransistors, and three‐dimensionally (3D) integrated optical devices are also highlighted.
More than 10,000 monogenic inherited disorders have been identified, affecting millions of people worldwide. Among these are autosomal dominant mutations, where inheritance of a single copy of a defective gene can result in clinical symptoms. Genes in which dominant mutations manifest as late-onset adult disorders include BRCA1 and BRCA2, which are associated with a high risk of breast and ovarian cancers 1 , and MYBPC3, mutation of which causes hypertrophic cardiomyopathy (HCM) 2 . Because of their delayed manifestation, these mutations escape natural selection and are often transmitted to the next generation. Consequently, the frequency of some of these founder mutations in particular human populations is very high. For example, the MYBPC3 mutation is found at frequencies ranging from 2% to 8% 3 in major Indian populations, and the estimated frequency of both BRCA1 and BRCA2 mutations among Ashkenazi Jews exceeds 2% 4 .HCM is a myocardial disease characterized by left ventricular hypertrophy, myofibrillar disarray and myocardial stiffness; it has an estimated prevalence of 1:500 in adults 5 and manifests clinically with heart failure. HCM is the commonest cause of sudden death in otherwise healthy young athletes. HCM, while not a uniformly fatal condition, has a tremendous impact on the lives of individuals, including physiological (heart failure and arrhythmias), psychological (limited activity and fear of sudden death), and genealogical concerns. MYBPC3 mutations account for approximately 40% of all genetic defects causing HCM and are also responsible for a large fraction of other inherited cardiomyopathies, including dilated cardiomyopathy and left ventricular non-compaction 6 . MYBPC3 encodes the thick filament-associated cardiac myosin-binding protein C (cMyBP-C), a signalling node in cardiac myocytes that contributes to the maintenance of sarcomeric structure and regulation of both contraction and relaxation 2 .Current treatment options for HCM provide mostly symptomatic relief without addressing the genetic cause of the disease. Thus, the development of novel strategies to prevent germline transmission of founder mutations is desirable. One approach for preventing second-generation transmission is preimplantation genetic diagnosis (PGD) followed by selection of non-mutant embryos for transfer in the context of an in vitro fertilization (IVF) cycle. When only one parent carries a heterozygous mutation, 50% of the embryos should be mutationfree and available for transfer, while the remaining carrier embryos are discarded. Gene correction would rescue mutant embryos, increase the number of embryos available for transfer and ultimately improve pregnancy rates.Recent developments in precise genome-editing techniques and their successful applications in animal models have provided an option for correcting human germline mutations. In particular, CRISPR-Cas9 is a versatile tool for recognizing specific genomic sequences and inducing DSBs 7-10 . DSBs are then resolved by endogenous DNA repair mechanisms, prefer...
Throughout its 40-year history, the field of gene therapy has been marked by many transitions. It has seen great strides in combating human disease, has given hope to patients and families with limited treatment options, but has also been subject to many setbacks. Treatment of patients with this class of investigational drugs has resulted in severe adverse effects and, even in rare cases, death. At the heart of this dichotomous field are the viral-based vectors, the delivery vehicles that have allowed researchers and clinicians to develop powerful drug platforms, and have radically changed the face of medicine. Within the past 5 years, the gene therapy field has seen a wave of drugs based on viral vectors that have gained regulatory approval that come in a variety of designs and purposes. These modalities range from vector-based cancer therapies, to treating monogenic diseases with life-altering outcomes. At present, the three key vector strategies are based on adenoviruses, adeno-associated viruses, and lentiviruses. They have led the way in preclinical and clinical successes in the past two decades. However, despite these successes, many challenges still limit these approaches from attaining their full potential. To review the viral vector-based gene therapy landscape, we focus on these three highly regarded vector platforms and describe mechanisms of action and their roles in treating human disease.
A simple solution‐deposition method is developed to fabricate polymer solar cells that comprise a SAM‐modified ZnO/metal bilayer cathode. The contact properties between the ZnO and metal can be enhanced by interfacial modification with a series of carboxylic acid‐based dipolar SAMs. This finding provides a new strategy for very effective contact engineering in organic optoelectronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.