More than 10,000 monogenic inherited disorders have been identified, affecting millions of people worldwide. Among these are autosomal dominant mutations, where inheritance of a single copy of a defective gene can result in clinical symptoms. Genes in which dominant mutations manifest as late-onset adult disorders include BRCA1 and BRCA2, which are associated with a high risk of breast and ovarian cancers 1 , and MYBPC3, mutation of which causes hypertrophic cardiomyopathy (HCM) 2 . Because of their delayed manifestation, these mutations escape natural selection and are often transmitted to the next generation. Consequently, the frequency of some of these founder mutations in particular human populations is very high. For example, the MYBPC3 mutation is found at frequencies ranging from 2% to 8% 3 in major Indian populations, and the estimated frequency of both BRCA1 and BRCA2 mutations among Ashkenazi Jews exceeds 2% 4 .HCM is a myocardial disease characterized by left ventricular hypertrophy, myofibrillar disarray and myocardial stiffness; it has an estimated prevalence of 1:500 in adults 5 and manifests clinically with heart failure. HCM is the commonest cause of sudden death in otherwise healthy young athletes. HCM, while not a uniformly fatal condition, has a tremendous impact on the lives of individuals, including physiological (heart failure and arrhythmias), psychological (limited activity and fear of sudden death), and genealogical concerns. MYBPC3 mutations account for approximately 40% of all genetic defects causing HCM and are also responsible for a large fraction of other inherited cardiomyopathies, including dilated cardiomyopathy and left ventricular non-compaction 6 . MYBPC3 encodes the thick filament-associated cardiac myosin-binding protein C (cMyBP-C), a signalling node in cardiac myocytes that contributes to the maintenance of sarcomeric structure and regulation of both contraction and relaxation 2 .Current treatment options for HCM provide mostly symptomatic relief without addressing the genetic cause of the disease. Thus, the development of novel strategies to prevent germline transmission of founder mutations is desirable. One approach for preventing second-generation transmission is preimplantation genetic diagnosis (PGD) followed by selection of non-mutant embryos for transfer in the context of an in vitro fertilization (IVF) cycle. When only one parent carries a heterozygous mutation, 50% of the embryos should be mutationfree and available for transfer, while the remaining carrier embryos are discarded. Gene correction would rescue mutant embryos, increase the number of embryos available for transfer and ultimately improve pregnancy rates.Recent developments in precise genome-editing techniques and their successful applications in animal models have provided an option for correcting human germline mutations. In particular, CRISPR-Cas9 is a versatile tool for recognizing specific genomic sequences and inducing DSBs 7-10 . DSBs are then resolved by endogenous DNA repair mechanisms, prefer...
The ability to deposit conformal catalytic thin fi lms enables opportunities to achieve complex nanostructured designs for catalysis. Atomic layer deposition (ALD) is capable of creating conformal thin fi lms over complex substrates. Here, ALD-MnO x on glassy carbon is investigated as a catalyst for the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR), two reactions that are of growing interest due to their many applications in alternative energy technologies. The fi lms are characterized by X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, ellipsometry, and cyclic voltammetry. The as-deposited fi lms consist of Mn(II) O, which is shown to be a poor catalyst for the ORR, but highly active for the OER. By controllably annealing the samples, Mn 2 O 3 catalysts with good activity for both the ORR and OER are synthesized. Hypotheses are presented to explain the large difference in the activity between the MnO and Mn 2 O 3 catalysts for the ORR, but similar activity for the OER, including the effects of surface oxidation under experimental conditions. These catalysts synthesized though ALD compare favorably to the best MnO x catalysts in the literature, demonstrating a viable way to produce highly active, conformal thin fi lms from earth-abundant materials for the ORR and the OER.
Nuclear factor erythroid-related factor 2 (NRF2) encodes a transcription factor that induces expression of cytoprotective proteins upon oxidative stress and oncogenic NRF2 mutations have been found in lung and head/neck cancers that inactivate KEAP1-mediated degradation of NRF2. The aim of this study was to catalogue NRF2 mutations in other human cancers. For this, we analysed 1145 cancer tissues from carcinomas from oesophagus, skin, uterine cervix, lung, larynx, breast, colon, stomach, liver, prostate, urinary bladder, ovary, uterine cervix, and kidney, and meningiomas, multiple myelomas, and acute leukaemias by single-strand conformation polymorphism (SSCP) assay. We detected NRF2 mutations in oesophagus (8/70; 11.4%), skin (1/17; 6.3%), lung (10/125; 8.0%), and larynx (3/23; 13.0%) cancers. Of note, all of the 22 mutations except one were found in squamous cell carcinomas (SCCs) (95.5%). The mutations were observed within or near DLG and ETGE motifs that are important in NRF2 and KEAP1 interaction. All of the oesophageal SCCs and skin SCCs with the NRF2 mutations showed increased NRF2 expression in the nuclei. However, none of the SCCs from oesophagus and skin harboured KEAP1 mutation. Our study demonstrated here that NRF2 mutation occurs not only in lung and head/neck cancers, but also in oesophageal and skin cancers. Our data suggest that the NRF2 mutation plays a role in the development of SCC and is a feature of SCC.
Salicylic acid (SA) is a critical signal for the activation of plant defense responses against pathogen infections. We recently identified SA-binding protein 2 (SABP2) from tobacco as a protein that displays high affinity for SA and plays a crucial role in the activation of systemic acquired resistance to plant pathogens. Here we report the crystal structures of SABP2, alone and in complex with SA at up to 2.1-Å resolution. The structures confirm that SABP2 is a member of the ␣͞ hydrolase superfamily of enzymes, with Ser-81, His-238, and Asp-210 as the catalytic triad. SA is bound in the active site and is completely shielded from the solvent, consistent with the high affinity of this compound for SABP2. Our biochemical studies reveal that SABP2 has strong esterase activity with methyl salicylate as the substrate, and that SA is a potent product inhibitor of this catalysis. Modeling of SABP2 with MeSA in the active site is consistent with all these biochemical observations. Our results suggest that SABP2 may be required to convert MeSA to SA as part of the signal transduction pathways that activate systemic acquired resistance and perhaps local defense responses as well.salicylic acid ͉ salicylic-acid-binding protein ͉ systemic acquired resistance ͉ ␣͞ hydrolase
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.