Standard protein expression systems, such as E. coli, often fail to produce folded, mono-disperse, or functional eukaryotic proteins (see Small-scale Expression of Proteins in E. coli). The expression of these proteins is greatly benefited by using a eukaryotic system, such as mammalian cells, that contains the appropriate folding and posttranslational machinery. Here, we describe methods for both small- and large-scale transient expression in mammalian cells using polyethylenimine (PEI). We find this procedure to be more cost-effective and quicker than the more traditional route of generating stable cell lines. First, optimal transfection conditions are determined on a small-scale, using adherent cells. These conditions are then translated for use in large-scale suspension cultures. For further details on generating stable cell lines please (see Rapid creation of stable mammalian cell lines for regulated expression of proteins using the Gateway® Recombination Cloning Technology and Flp-In T-REx® lines or Generating mammalian stable cell lines by electroporation).
Human tissues are intricate ensembles of multiple cell types embedded in complex and well-defined structures of the extracellular matrix (ECM). The organization of ECM is frequently hierarchical from nano to macro, with many proteins forming large scale structures with feature sizes up to several hundred microns. Inspired from these natural designs of ECM, nanotopography-guided approaches have been increasingly investigated for the last several decades. Results demonstrate that the nanotopography itself can activate tissue-specific function in vitro as well as promote tissue regeneration in vivo upon transplantation. In this review, we provide an extensive analysis of recent efforts to mimic functional nanostructures in vitro for improved tissue engineering and regeneration of injured and damaged tissues. We first characterize the role of various nanostructures in human tissues with respect to each tissue-specific function. Then, we describe various fabrication methods in terms of patterning principles and material characteristics. Finally, we summarize the applications of nanotopography to various tissues, which are classified into four types depending on their functions: protective, mechano-sensitive, electro-active, and shear stress-sensitive tissues. Some limitations and future challenges are briefly discussed at the end.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.