Protected areas (PAs) now shelter 54% of the remaining forests of the Brazilian Amazon and contain 56% of its forest carbon. However, the role of these PAs in reducing carbon fluxes to the atmosphere from deforestation and their associated costs are still uncertain. To fill this gap, we analyzed the effect of each of 595 Brazilian Amazon PAs on deforestation using a metric that accounts for differences in probability of deforestation in areas of pairwise comparison. We found that the three major categories of PA (indigenous land, strictly protected, and sustainable use) showed an inhibitory effect, on average, between 1997 and 2008. Of 206 PAs created after the year 1999, 115 showed increased effectiveness after their designation as protected. The recent expansion of PAs in the Brazilian Amazon was responsible for 37% of the region's total reduction in deforestation between 2004 and 2006 without provoking leakage. All PAs, if fully implemented, have the potential to avoid 8.0 ± 2.8 Pg of carbon emissions by 2050. Effectively implementing PAs in zones under high current or future anthropogenic threat offers high payoffs for reducing carbon emissions, and as a result should receive special attention in planning investments for regional conservation. Nevertheless, this strategy demands prompt and predictable resource streams. The Amazon PA network represents a cost of US$147 ± 53 billion (net present value) for Brazil in terms of forgone profits and investments needed for their consolidation. These costs could be partially compensated by an international climate accord that includes economic incentives for tropical countries that reduce their carbon emissions from deforestation and forest degradation.Amazon Region Protected Areas | effectiveness | reducing emissions from deforestation and forest degradation | simulation model | opportunity cost
Tropical forests dominated by only one or two tree species occupy tens of millions of hectares in Ammonia In many cases, the dominant species produce fruits, seeds, or oils of economic importance. Oligarchic (Gr. oligo = few, archic = dominated or ruled by) forests of six economic species, i. e., Euterpe oleracea, Grias peruviana, Jessenia bataua, Mauritia flexuosa, Myrciaria dubia, and Orbignya phalerata, were studied in Brazil and Peru Natural populations of these species contain from 100 to 3,000 conspecific adult trees/ha and produce up to 11.1 metric tons of fruit/hd/yr. These plant populations are utilized and occasionally managed, by rural inhabitants in the region. Periodic fruit harvests, if properly controlled have only a minimal impact on forest structure and function, yet can generate substantial economic returns Market-oriented extraction of the fruits produced by oligarchic forests appears to represent a promising alternative for reconciling the development and conservation of Amazonian forests.
Recent climate talks in Copenhagen reaffirmed the crucial role of reducing emissions from deforestation and degradation (REDD). Creating and strengthening indigenous lands and other protected areas represents an effective, practical, and immediate REDD strategy that addresses both biodiversity and climate crises at once.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.