In this work, a classification method for SSVEP-based BCI is proposed. The classification method uses features extracted by traditional SSVEP-based BCI methods and finds optimal discrimination thresholds for each feature to classify the targets. Optimising the thresholds is formalised as a maximisation task of a performance measure of BCIs called information transfer rate (ITR). However, instead of the standard method of calculating ITR, which makes certain assumptions about the data, a more general formula is derived to avoid incorrect ITR calculation when the standard assumptions are not met. This allows the optimal discrimination thresholds to be automatically calculated and thus eliminates the need for manual parameter selection or performing computationally expensive grid searches.The proposed method shows good performance in classifying targets of a BCI, outperforming previously reported results on the same dataset by a factor of 2 in terms of ITR. The highest achieved ITR on the used dataset was 62 bit/min. The proposed method also provides a way to reduce false classifications, which is important in real-world applications.
We participated in the M4 competition for time series forecasting and describe here our methods for forecasting daily time series. We used an ensemble of five statistical forecasting methods and a method that we refer to as the correlator. Our retrospective analysis using the ground truth values published by the M4 organisers after the competition demonstrates that the correlator was responsible for most of our gains over the naive constant forecasting method. We identify data leakage as one reason for its success, partly due to test data selected from different time intervals, and partly due to quality issues in the original time series. We suggest that future forecasting competitions should provide actual dates for the time series so that some of those leakages could be avoided by the participants.
In this study, the information bottleneck method is proposed as an optimisation method for steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI). The information bottleneck is an information-theoretic optimisation method for solving problems with a trade-off between preserving meaningful information and compression. Its main practical application in machine learning is in representation learning or feature extraction. In this study, we use the information bottleneck to find optimal classification rule for a BCI. This is a novel application for the information bottleneck. This approach is particularly suitable for BCIs since the information bottleneck optimises the amount of information transferred by the BCI. Steady-state visual evoked potential-based BCIs often classify targets using very simple rules like choosing the class corresponding to the largest feature value. We call this classifier the arg max classifier. It is unlikely that this approach is optimal, and in this study, we propose a classification method specifically designed to optimise the performance measure of BCIs. This approach gives an advantage over standard machine learning methods, which aim to optimise different measures. The performance of the proposed algorithm is tested on two publicly available datasets in offline experiments. We use the standard power spectral density analysis (PSDA) and canonical correlation analysis (CCA) feature extraction methods on one dataset and show that the current approach outperforms most of the related studies on this dataset. On the second dataset, we use the task-related component analysis (TRCA) method and demonstrate that the proposed method outperforms the standard argmax classification rule in terms of information transfer rate when using a small number of classes. To our knowledge, this is the first time the information bottleneck is used in the context of SSVEP-based BCIs. The approach is unique in the sense that optimisation is done over the space of classification functions. It potentially improves the performance of BCIs and makes it easier to calibrate the system for different subjects.
Intuitively, the level of autonomy of an agent is related to the degree to which the agent’s goals and behaviour are decoupled from the immediate control by the environment. Here, we capitalise on a recent information-theoretic formulation of autonomy and introduce an algorithm for calculating autonomy in a limiting process of time step approaching infinity. We tackle the question of how the autonomy level of an agent changes during training. In particular, in this work, we use the partial information decomposition (PID) framework to monitor the levels of autonomy and environment internalisation of reinforcement-learning (RL) agents. We performed experiments on two environments: a grid world, in which the agent has to collect food, and a repeating-pattern environment, in which the agent has to learn to imitate a sequence of actions by memorising the sequence. PID also allows us to answer how much the agent relies on its internal memory (versus how much it relies on the observations) when transitioning to its next internal state. The experiments show that specific terms of PID strongly correlate with the obtained reward and with the agent’s behaviour against perturbations in the observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.